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A Comparison of Parametric and

Coarsened Bayesian Interval Estimation

in the Presence of a Known

Mean-Variance Relationship

Abstract

While the use of Bayesian methods of analysis have become increasingly com-
mon, classical frequentist hypothesis testing still holds sway in medical research
- especially clinical trials. One major difference between a standard frequentist
approach and the most common Bayesian approaches is that even when a fre-
quentist hypothesis test is derived from parametric models, the interpretation
and operating characteristics of the test may be considered in a distribution-free
manner. Bayesian inference, on the other hand, is often conducted in a paramet-
ric setting where the interpretation of the results is dependent on the parametric
model. Here we consider a Bayesian counterpart to the most standard frequen-
tist approach to inference. Instead of specifying a sampling distribution for the
data we specify an approximate distribution of a summary statistic, thereby re-
sulting in a “coarsening” of the data. This approach is robust in that it provides
some protection against model misspecification and allows one to account for
the possibility of a specified mean-variance relationship. Notably, the method
also allows one to place prior mass directly on the quantity of interest or, al-
ternatively, to employ a noninformative prior - a counterpart to the standard
frequentist approach. We explore interval estimation of a population location
parameter in the presence of a mean-variance relationship - a problem that is
not well addressed by standard nonparametric frequentist methods. We find
that the method has performance comparable to the correct parametric model,
and performs notably better than some plausible yet incorrect models. Finally,
we apply the method to a real data set and compare ours to previously reported
results.



1. INTRODUCTION

Many scientific questions are addressed statistically by making inference
about some population parameter. In a clinical trial, for example, treat-
ment effect is most often measured by comparing some summary measure, θ,
of the distribution of responses, ~y, across populations. One might consider a
difference or ratio of means, a difference or ratio of medians, an odds ratio,
a hazard ratio or a number of other possibilities. The standard procedure is
to use data from the samples in order to make inference about the true value
of the treatment effect θ in the populations.

When making such inference, there are two major schools of statistical
thought: frequentist and Bayesian. Both schools employ parametric and
nonparametric methods but the operating characteristics considered and in-
terpretations differ. A key difference between the frequentist and Bayesian
approaches concerns the quantities that are conditioned upon in statistical
models: the frequentist approach considers the distribution of the data given
a parameter, p(~y|θ), whereas the Bayesian approach considers p(θ|~y). Con-
ceptually, both of these models can be derived from the joint distribution
p(θ, ~y) but standard practice shows the frequentist and Bayesian approaches
diverging in the probability model. In particular, there is a greater tendency
in the frequentist approach to interpret results nonparametrically and it is
this difference we most want to address.

We regard the frequentist and Bayesian approaches as complementary,
each providing assistance in answering important scientific questions. We
also regard that nonparametric methods, for reasons of robustness, are to be
preferred to parametric models. However, nonparametric approaches should
be broad enough to include any reasonable parametric model that might have
instead been chosen to represent the data. Thus our goal in this paper is to
explore a nonparametric Bayesian method of analysis that exists in the same
probability space as the most common nonparametric frequentist approach.
We view this as a first step in working toward a more general method for
evaluating both Bayesian and frequentist operating characteristics of statis-
tical procedures for clinical trial design.

In the next section we provide a more detailed account of the background
and motivation for the current research. In § 3 we outline a proposed gen-

1



eral approach to the problem. In § 4 we present the results of simulation
studies for inference about a population mean and median. In § 5 we apply
the method to a hospital charge dataset, obtaining confidence intervals for
measures of location for a possibly Lognormal population and compare our
results to those obtained by previous researchers. We follow with a discussion
in § 6.

2. BACKGROUND AND MOTIVATION

2.1 Parametric and nonparametric models

We desire to avoid, as far as possible, parametric assumptions. Aside
from being a priori unverifiable, assuming a specific parametric model often
seems unreasonable given otherwise limited information. Often such models
require more detailed assumptions than the experiment we are analyzing was
designed to address. In a two-sample clinical trial, for example, the scientific
question to be addressed is usually one of central tendency: Does the treat-
ment tend to result in higher (lower) values for the outcome of interest? If we
choose to make inference about the mean outcome, the use of a parametric
model is equivalent to admitting ignorance about the effect of treatment on
the first moment of the outcome distribution but then assuming we know the
effect of treatment on all of the higher moments of the distribution including
the variance, skewness, kurtosis and so on. Nonparametric methods allow us
to relax these overly detailed assumptions. However, to provide the greatest
utility, our nonparametric model should be be broad enough to include the
particular parametric model that others would have chosen.

Attempting to circumvent the issues raised by use of parametric models by
relying on model checking is problematic. Reviewers of earlier drafts of this
manuscript, in fact, suggested that much of our statistical and scientific con-
cerns could be addressed by simple model checking. We feel, however, that
a reliance on model checking is misguided in a number of respects. First, it
may be that no parametric modeling is required; e.g. when the use of a simple
statistical functional meets the goals of the analysis. Second, the application
may be one such that the statistical model must be specified in advance; this
is often the case when dealing with governmental regulatory agencies, as in
seeking approval for a novel treatment. In the Bayesian paradigm we have
a philosophical difficulty with model checking in that it seems reasonable to
expect that any uncertainty in the model should have already been incorpo-
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rated in the prior distribution. A final difficulty with model checking we’d
like to point out is that typical methods of testing for lack of model fit are
lacking in power at smaller sample sizes. Later in this paper, for example, we
will consider data simulated from a class of mixtures of Exponential and Log-
normal distributions: Figure 1 shows some typical distributions from which
such data might be sampled. One can see that in practice it may be difficult
to distinguish which distribution gave rise to a particular dataset and, in the
case of a mixture, especially difficult to determine the exact composition. In
the situation we are considering in this paper, where the model is posited
in advance yet there is concern over possible unanticipated departures, the
use of an omnibus test such as the Kolmogorov-Smirnov would seem most
appropriate. Simulations show, however, that the Kolmogorov-Smirnov test
has poor power discriminating between the Exponential and Lognormal in
smaller sample sizes. Even for a sample size of 40 the Kolmogorov-Smirnov
statistic showed only about 25% power to reject the α = 0.05 level hypoth-
esis test that the data were from a Lognormal distribution when they were
in fact from the Exponential and about 12% power to reject the hypothesis
that the data were Exponential when they were Lognormal.

2.2 How parametric models influence analysis

In order to have nonparametric models which encompass common para-
metric models, it is useful to consider the ways in which parametric models
may drive a statistical analysis and to examine whether that role is central
to answering the scientific question. Parametric assumptions influence:

1. The choice of parameter to be compared. For a location problem, for
instance, should we consider the median or the mean? If we assume
our data arises from a Normal distribution, for example, then we usu-
ally focus on the mean. If, on the other hand, we assume the data
come from a Double-Exponential distribution our focus might be the
median. That is, a fully parametric approach often chooses parame-
ters corresponding to sufficient statistics. A nonparametric statistician
might believe that a scientifically more appropriate criterion would be
based on some meaningful loss function. For instance, we may desire
to downweight the influence of outliers and so might choose to make
inference about the geometric mean. Such an approach is common in
health services cost data where interest often lies in using a mean to
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Figure 1. Top: Typical Exponential and Lognormal distributions for mean
inference.
Bottom: Typical Exponential and Lognormal distributions for median infer-
ence
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estimate total costs in a population, regardless of the “natural para-
meter” from some presumed probability model.

2. The way the parameter is computed. For example, if we wanted to
use the mean for scientific reasons, in estimating the population mean
under an Exponential model we might consider the sample arithmetic
mean while for a Lognormal model the formula would be a function of
the sample geometric mean. It would be appropriate, however, to use
the nonparametric estimator in either case. To the extent that science
dictates the mean but not the parametric model, the robustness of a
nonparametric estimator may be preferred.

3. The hypothesized mean-variance relationship of our selected statistic.
This is a key idea which we will discuss in more detail later in this
section. For an example, in the case of both the Exponential and Log-
normal models the variance of the sample mean is proportional to the
square of the population mean. For the Poisson model, on the other
hand, the variance is assumed equal to the mean. In the standard
nonparametric use of the t-test we generally construct confidence in-
tervals and the like assuming a constant variance across alternatives.
The nonparametric approach to the mean-variance relationship that we
consider in this paper encompasses specific classes of parametric mod-
els. Hence we might, for example, look at nonparametric models with
mean-variance relationships that include all Exponential and certain
Lognormal models as a subclass.

4. The shape of the distribution of the statistic under different parameter
values. For many test statistics the distribution of the nonparametric
estimator converges to a Normal distribution. Thus in large samples, a
parametric model has little impact on this aspect of parametric analy-
ses.

5. The hypothesized shape of the distribution. This level of detail is nec-
essary only if we wish to make single value predictions. Here we are
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addressing inference about a population treatment effect.

The above argues that we might expect nonparametric models to cap-
ture much of the information contained in parametric models provided the
mean-variance relationship is adequately addressed. In fact, much frequen-
tist inference may be interpreted nonparametrically, even when the choice
of statistic is derived under parametric models. For instance, Lumley et al.
Lumley et al. (2002) show that although the t-test comparing means is de-
rived under an assumption of Normally distributed data, it is valid to an
excellent approximation even given the extreme departures from normality
found, for instance, in medical cost data. Lumley et al. do not address
the issue of the mean-variance relationship, however, and so their approach
would not have corresponded well with parametric estimation based on, for
example, a Lognormal model.

2.3 The mean-variance relationship in frequentist statistics

The major difficulty posed by a mean-variance relationship comes down
to this: In general, when performing frequentist hypothesis testing, only the
sampling distribution of the estimator θ̂ under the null hypothesis θ = θ0 need
be known. Often, such an estimator is asymptotically normally distributed,
and so frequentist hypothesis testing amounts to estimating the expectation
and the variance of the sampling distribution when θ = θ0. For accurate
confidence intervals, however, these first two moments of the statistic must
be known under all parameter values. Meeting this further requirement is
difficult and hence many methods of interval estimation, parametric as well
as nonparametric, simply ignore the presence of a mean-variance relationship.

That the mean-variance relationship matters in nonparametric frequentist
inference can be seen by considering the most common method of obtaining
an interval estimate for a parameter: the “Wald” interval. That is

θ̂ ± Z1−α/2 ×
σ̂

n

where σ̂ is estimated under θ̂. Under an Exponential model, for example, one
might take σ̂ = θ̂. Such intervals enjoy many nice properties with simplicity
and ease of construction perhaps chief among them. It is recognized, how-
ever, that under various circumstances such intervals possess severe failings
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as well. The Wald interval is based on asymptotic results and is valid only for
sufficiently large samples. An exact confidence interval would be preferred,
of course, but is not always available. Recall that Cα(~y) is a 100(1 − α)%
confidence interval for θ if Pr(θ ∈ Cα(~y)|θ) = 1 − α. In general, confidence
intervals are related to hypothesis tests of the form H0 : θ = θ0 versus a
two-sided alternative H1 : θ 6= θ0. Specifically, Cα(~y) should contain all of
those values of θ that would not be rejected under H0. Thus a Wald-based
confidence interval corresponds to the inversion of a Wald-based hypothesis
test. An important point about Wald intervals is that the variance does not
change with θ.

Somewhat less commonly encountered are “Score” intervals (θL, θH) where

θL = θ̂ − Z1−α/2 ×
√

V (θL)

n

θH = θ̂ + Z1−α/2 ×
√

V (θH)

n
.

Such score intervals are based on inversion of the Rao score test. Here, under
an Exponential model, one might take V (θL) = θL. The score test, in turn,
is based on the score function

`′n(θ0) =
n
∑

i=1

f ′

θ0
(yi)

fθ0
(yi)

.

Under many circumstances the score interval has more accurate coverage
than the corresponding Wald interval. The key difference between the Wald
and Score intervals is that the former is based on the asymptotic distribution
of the single observed θ̂ while the latter is based on the distribution of the
score statistic `′(θ).

Table 1 shows the results of a simple simulation study for inference about
an Exponential mean. For the Exponential model, V (θ) = θ2. Nominal
95% exact, Wald and Score-based confidence intervals were constructed from
datasets simulated over a variety of sample sizes. Here we arbitrarily (as
this is a scale family) chose mean, θ, equal to 2. In terms of frequentist
coverage probability we see that the Wald interval performs most poorly,
attaining only approximately 90% coverage for the smaller sample sizes but
improving steadily. The Score interval, in contrast, provides reasonably good
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Table 1

Summary of results of simulation study for inference on an Exponential
mean. Based on 10,000 simulated datasets for each sample size (n). Monte

Carlo error for proportions:
√

(0.95)(0.05)/10000 ≈ 0.002.

coverage probability mean interval width
exact Wald Score exact Wald Score

n= 10 0.9486 0.9046 0.9536 2.9899 2.4825 4.0311
n= 25 0.9524 0.9313 0.9563 1.6776 1.5617 1.8453

θ = 2 n= 40 0.9480 0.9383 0.9512 1.2978 1.2425 1.3746
n=100 0.9540 0.9461 0.9546 0.7965 0.7840 0.8153
n=250 0.9497 0.9473 0.9502 0.4988 0.4964 0.5041

coverage probabilities but at the cost of requiring notably larger intervals for
the smaller sample sizes. In either case we are using a Normal approxima-
tion to the distribution of y. In the Exponential model, the variance of the
data, and hence of many statistics of interest, is a deterministic function of
the mean. The Wald interval fails mainly because it ignores this functional
relationship. It does not perform well until n is large enough to allow for
nearly constant variance V (θ) over the range of precision. The Score interval,
however, explicitly accounts for the mean-variance relationship and performs
well even for small n. So we see by this example that parametric frequentist
methods still require particular attention to the mean-variance relationship
and note that nonparametric frequentist methods tend not to address the
issue in practice.

2.4 The mean-variance relationship in Bayesian statistics

The impact of the mean-variance relationship on the Bayesian approach
to inference may seem moot. This is because parametric Bayesian methods
account for the presence of a mean-variance relationship in an accurate and
natural way provided the posited sampling distribution for the data is cor-
rect under all alternatives. Unfortunately these parametric methods are not
usually robust to model misspecification. On the other hand, standard non-
parametric Bayesian methods may be able to account for a mean-variance
relationship by placing a prior on the space of all distributions Ferguson
(1974). These so-called Dirichlet process prior models are relatively com-
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plicated, however, and it is not clear how to place mass on specific mean-
variance relationships. Also, the probability space of such models is more
cumbersome than that of nonparametric frequentist models. For instance: If
the prior is subjective, can the investigator state how much mass is placed,
for example, on bimodal distributions?

One goal of this paper is to explore a nonparametric Bayesian method
of analysis which is comparable to the probability models used in the non-
parametric frequentist setting but which can accommodate a mean-variance
relationship. We consider a Bayesian approach based on treating the frequen-
tist nonparametric estimator, θ̂ = t(~y), as a “coarsening” of the data. Our
approximate likelihood, p̂(θ̂|θ), is based on the asymptotic distribution of a
sample statistic, i.e. the same likelihood used in nonparametric frequentist
analyses. The use of an approximate distribution for θ̂ is robust in that it
should hold under a wider variety of sampling distributions. We believe such
an approach enjoys the characteristic strengths of both schools of statistical
thought, robustness and validity of interval estimates, without the accom-
panying weaknesses. We compare this coarsened Bayesian approach to the
fully parametric approach via simulation study. As a first step we wish to
examine the accuracy of such an approach and consider its efficiency as mea-
sured by the width of posterior credible intervals. We do this in the context
of a known mean-variance relationship, with and without the presence of a
nuisance parameter, where interest lies in making inference for a population
location parameter.

3. Methods

Standard parametric Bayesian inference for a population parameter, θ, re-
quires the specification of a prior distribution p(θ) of the parameter and a
sampling distribution p(~y|θ) for the data given θ. All inference is then based
on the posterior distribution

p(θ|~y) =
p(~y|θ)p(θ)

∫

p(~y|θ)p(θ)dθ
(1)

∝L(θ|~y)p(θ)

Here we assume satisfaction with p(θ). Equation 1 makes clear that much is
required even for a simple Bayesian hypothesis test. For example, calculating
the posterior probability of the null hypothesis θ = θ0 requires integrating
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the sampling distribution p(~y|θ) over all possible values of θ. As previously
noted a frequentist hypothesis test requires knowledge only of what attains
under the null hypothesis of θ = θ0.

Our particular concern is that in the nonparametric frequentist world we
may not know or even have a likelihood, L(θ|~y). What then should one
“plug-in” for the likelihood in equation 1? Ideally we should use the “true”
sampling distribution. It is not clear when (or how or why) this true dis-
tribution is known and thus we might like to consider alternatives robust to
model misspecification. There are many possibilities. Pratt et al. suggest us-
ing the approximate Normal distribution for the sample mean while treating
the estimated variance as known Pratt et al. (1965). Boos & Monahan con-
sider this large sample approximation as well as an approximation based on
a bootstrap estimate of the sampling distribution of an estimator Monahan
and Boos (1992) Boos and Monahan (1986). Lazar Lazar (2003) examines
the use of empirical likelihood and the frequentist properties of resultant pos-
terior intervals. None of these authors explicitly consider a mean-variance
relationship and, in particular, we note that in the general setting bootstrap-
ping cannot reproduce or discover the mean-variance relationship.

Thus we consider basing inference on the approximate posterior distrib-
ution

p̂(θ|t(~y)) =
p̂(t(~y)|θ)p(θ)

∫

p̂(t(~y)|θ)p(θ)dθ

where t(~y) is a statistic (or set of statistics), such as the sample mean or
median, and p̂(t(~y)|θ) is an approximate sampling distribution that might be
employed in a typical nonparametric frequentist setting. A Bayesian analysis
using the information in t(~y) rather than ~y would lead naturally to computa-
tion of the posterior distribution p(θ|t(~y)). Since p(t(~y)|θ) is not necessarily
known, for robustness to model misspecification we compute instead p̂(t(~y)|θ)
- an approximation that is valid under a variety of p(~y). For inference about
the population mean θ = E(y), for example, we might take the nonparamet-
ric estimate t(~y) = θ̂ = 1

n

∑

y and p̂(t(~y)|θ) = Normal(θ, var(y|θ)/n). For

inference about the population median θ = F−1
y (1

2
) we might take t(~y) = θ̂ =

F̂−1
n (1

2
) and use its asymptotic distribution p̂(t(~y)|θ) = Normal(θ, 1/4np2

y(θ)).
We note that in each case, under standard regularity conditions, the approx-
imation becomes more accurate as sample size increases. We also note that
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the variance functions of these asymptotic distributions may involve a nui-
sance parameter which would need to be estimated as well.

The Bayesian counterpart to the frequentist idea of a confidence interval
is usually referred to as a “(posterior) credible interval” and corresponds to
100(1− α)% of the posterior probability p(θ|~y). Commonly used are central
posterior intervals and regions of highest posterior density. In contrast to fre-
quentist confidence intervals, Bayesian credible intervals possess individual
coverage probability. For example, a single 95% Bayesian credible interval for
a parameter is interpreted as having 95% probability of containing the true
parameter value. A single frequentist confidence interval, on the other hand,
either contains the parameter value or not - there is no probability state-
ment to be made. Frequentist coverage probabilities arise from the (possibly
hypothetical) replication of a procedure and taking the ratio of favorable
outcomes. Later, when we discuss the results of simulation studies, we look
largely at frequentist probabilities but also consider the Bayesian interpreta-
tion. It should be noted that Bayesian analysis using a noninformative prior
often leads to procedures with approximate frequentist validity.

3.1 Example

We illustrate the proposed method by considering inference about, in
turn, a population mean and population median. The mean is of interest
due to its scientific relevance and great familiarity. The median is of interest
as it illustrates the difference between the parametric and nonparametric es-
timates and introduces the idea of nuisance parameters and how to account
for such.

First, suppose we were to assume that p(y|θ) is the Exponential distri-
bution with mean θ. Standard parametric Bayesian inference for θ given a
sample of size n is based upon

p(θ|~y) ∝ p(θ)
∏ 1

θ
e−yi/θ

≡ p(θ)

(

1

θ

)n

e−
P

yi/θ

where the sample mean is a sufficient statistic for the parameter of interest.
However, having no certain knowledge of the parametric model we would
propose instead to base inference on the approximate posterior obtained by

11



using the asymptotic distribution for the sample mean, t(~y) = θ̂ = 1
n

∑

yi

p̂(θ|θ̂) ∝ p(θ) φ

(

θ̂ − θ

θ/
√

n

)

In general, if t(~y) is a sufficient statistic then we are simply approximating
the likelihood with a robust alternative. If t(~y) is not sufficient then the
method should still prove robust for inference about the mean, though with
some possible loss of efficiency (as compared to the unknown true model).
Most importantly, this approximation will be valid for any family of distrib-
utions with the given mean-variance relationship.

For a slightly more interesting example consider the mixture distribution

p(y|θ, λ) = λ Exponential + (1 − λ) Lognormal

where both the Exponential and Lognormal distributions are parameterized
with median θ and variance c θ2. That is

p(y|θ, λ = 1) =
log 2

θ
exp {−y log 2

θ
} completely Exponential sample

p(y|θ, λ = 0) =
1√
2π

exp {−(log y − log θ)2/2}/y completely Lognormal sample

Suppose interest is in making inference about the population median.
Again, standard inference would be based on the full parametric posterior

p(θ, λ|~y) ∝ p(θ, λ)
∏

p(y|θ, λ)

which is easily manipulated to yield the marginal posterior for θ. Again,
lacking certainty about the parametric model we propose basing inference on

p̂(θ|θ̂) ∝ p(θ, λ) φ

(

θ̂ − θ

cλθ/
√

n

)

where cλ is a nuisance parameter, independent of θ, that needs to be consid-
ered (the formula for cλ comes from the asymptotic distribution for sample
quantiles as noted earlier for the median). There is a hierarchy of approaches
that are typically taken to address cλ:
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1. in parametric analyses one often implicitly assumes such nuisance pa-
rameters to be known;

2. in a more honest Bayesian analysis one might place a joint prior distri-
bution on the nuisance parameter and the parameter of interest;

3. in a rather simple-minded approach (the common frequentist approach
based on asymptotics with consistent estimators) one might just cal-
culate some plug-in estimate of cλ and then treat it as known.

In the next section we examine the performance of the approximate posterior
distribution for θ where we take these various approaches for dealing with
cλ.

4. Simulations and results

Using the mixture distribution example from the previous section we con-
sider, in turn, inference for the mean and inference for the median using the
proposed approximate posterior distributions. Specifically, we generate data
from

y|θ, λ ∼ λp1(y|θ) + (1 − λ)p2(y|θ)

where p1(y|θ) is an Exponential distribution and p2(y|θ) is from a class of
Lognormal distributions. When interest is in inference for the mean we con-
sider parameterizations of p1 and p2 such that E(y|θ) = θ and var(y|θ) = θ2.
We also consider the distribution of λ as a point mass at 1, 0, and 1/2,
corresponding to samples that are entirely Exponential, entirely Lognormal,
or a 50/50 mixture of the two, respectively. When we turn our attention
to inference about the median, we reparameterize p1 and p2 so that p(θ)
is explicitly a prior for θ as the median. We also examine the case when
λ ∼ Uniform(0, 1), that is, the samples are a random mixture of Exponential
and Lognormal random variables.

For each sample size (n=10, 25, 40, 100, 250) and sampling scheme (Ex-
ponential, Lognormal, mixture) combination, we sampled 10,000 values of θ
from a Normal(10, 1) distribution and simulated a corresponding dataset.
Using Markov Chain Monte Carlo we estimated the posterior distribution
based on each of the parametric sampling distributions and the proposed
approximations. We calculated 95% posterior credible intervals, (θL, θH) for
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each sampled θ by setting θL equal to the 2.5% and θH to the 97.5% MCMC
sample quantiles (alternatively one might consider the highest posterior den-
sity (HPD) intervals). We also calculated the width of each interval and
determined whether or not it contained θ.

Note that although the data in these simulations are generated from lin-
ear combinations of two particular parametric distributions the estimation
approach is applicable to a much larger class. Here we require only that the
mean-variance relationship of E(θ̂) = θ and var(θ̂) = cθ2 be approximately
correct. We summarize the results of the simulations in the next two sections.

4.1 Inference about a population mean

It is a simple matter to obtain, analytically, the asymptotic relative ef-
ficiencies (ARE’s) of the coarsened estimator and that of the parametric
estimator for the Exponential and Lognormal models. For inference about
the mean the coarsened approach and the Exponential model rely on the
same statistic, y, and thus the coarsened approach is asymptotically effi-
cient. The sufficient statistic for the Lognormal model, log y, has asymptotic
variance θ2 log 2 while the asymptotic variance for y is θ2. Thus the ARE of
the coarsened estimate relative to the parametric Lognormal is log 2 ≈ 0.693.

We focus now on small sample properties. Table 2 displays the results of
a simulation study comparing correct model parametric inference, incorrect
model parametric inference, and the nonparametric coarsened approach. In-
ference based on the coarsened approach relies on the approximate Normal
distribution for the sample mean with the assumed mean-variance relation-
ship.

We see that inference based on the correct parametric model attains, as
expected, approximately 95% frequentist coverage probabilities and that cov-
erage improves with increasing sample size. Inference based on the proposed
coarsened approach attains nearly the same coverage probabilities with no
appreciable loss of efficiency in the larger sample sizes when the correct para-
metric model is Exponential and some small loss of efficiency when the data
are Lognormal.

When inference is based on the incorrect parametric model, however,
things can go terribly wrong. Inference based on the Exponential model
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Table 2

Summary of results of simulation study for inference on a population mean.
Based on 10,000 simulated datasets for each p(y|θ) and sample size (n)

combination. Monte Carlo error for proportions:
√

(0.95)(0.05)/10000 ≈ 0.002.

coverage probability mean interval width
true assumed p(y|θ) assumed p(y|θ)

p(y|θ) exp lnorm coarse exp lnorm coarse

n= 10 0.947 0.907 0.944 3.725 3.698 3.705
n= 25 0.948 0.817 0.944 3.490 3.353 3.480

Exponential n= 40 0.953 0.727 0.952 3.295 3.063 3.291
n=100 0.952 0.409 0.950 2.755 2.320 2.760
n=250 0.949 0.081 0.947 2.084 1.574 2.090

n= 10 0.946 0.945 0.938 3.723 3.656 3.709
n= 25 0.950 0.953 0.946 3.491 3.339 3.482

Lognormal n= 40 0.949 0.947 0.947 3.296 3.092 3.296
n=100 0.950 0.947 0.946 2.756 2.481 2.763
n=250 0.948 0.946 0.947 2.083 1.807 2.090

n= 10 0.952 0.933 0.947 3.722 3.676 3.707
n= 25 0.950 0.904 0.945 3.490 3.348 3.482

50/50 mixture n= 40 0.947 0.874 0.942 3.297 3.081 3.293
n=100 0.953 0.746 0.952 2.757 2.402 2.760
n=250 0.949 0.489 0.950 2.086 1.690 2.090
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when the data are truly Lognormal poses no difficulties since the likelihood
from the Exponential model is similar to that used in the coarsened approach.
The reverse, however, is not true because we are inappropriately estimating
a function of the geometric mean rather than the arithmetic mean. This
inappropriate estimate becomes more precise and hence more incorrect as
sample size increases. For instance, when a Lognormal model is assumed but
the data come from an Exponential distribution we see that our coverage
probability is only 91% for a sample size of 10 and decreases to about 8%
for a sample size of 250. We note again that poor coverage occurs even at
small sample sizes where the Kolmogorov-Smirnov statistic shows low power
to differentiate the two distributions (e.g. about 12 and 25% when n = 40
when the data are truly Lognormal and Exponential, respectively), hence
model checking will not solve the problem.

4.2 Inference about a population median

We again consider a sample ~y from a mixture of Exponential and Log-
normal distributions but, as stated, reparameterized so that p(θ) is explic-
itly a prior distribution for θ as the median. For the coarsened approach
we use the sample median, θ̂ = F−1

n (1
2
), which can be shown (e.g. Fergu-

son (1996)) to have an asymptotic Normal distribution with E(θ̂) = θ and
var(θ̂) = 1/[4np2

y(θ)]. In the present case the variance formula may be writ-

ten var(θ̂) = cλ θ2/n, where c1 = 1/(log2 2) for the Exponential distribution
and c0 = π/2 for the particular class of Lognormal distributions considered
here. As mentioned earlier, there are different ways of dealing with this
nuisance parameter (including the common approach of just ignoring it and
the mean-variance relationship). We obtain a simple plug-in estimate for
the mean-variance relationship in the following manner. For each simulated
data set we took the variance stabilizing logarithmic transformation of the
data (failure to do so produced poor results) and bootstrapped (Efron and
Tibshirani (1993)) the resulting sample median to obtain a variance esti-

mate, V̂ (l̂og θ). Doing this and applying the δ-method allowed us to set

ĉλ = nV̂ (l̂og θ). For each run of the simulation we used 200 bootstrap sam-
ples to obtain this estimate. This is an admittedly ad-hoc approach but our
simulations show reasonable performance and the approach is better than
basing confidence intervals on a single plug-in estimate of the variance as is
the case with a Wald interval (see Table I). Aside from this additional esti-
mation of cλ for the coarsened approach we proceeded in a similar manner
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as in the case of the sample mean simulation.

Just as in the case of the mean, the ARE’s of the coarsened and parametric
approaches for inference about the median are simple to obtain analytically.
For inference using the Exponential model when the data are Exponential
the asymptotic variance is θ2

log2 2
while that of the sample median is simply

θ2 leading to an ARE of log2 2 ≈ 0.480. For the Lognormal estimator the
asymptotic variance is 2θ2

π
and so the ARE of the coarsened estimate relative

to the parametric Lognormal is 2

π
≈ 0.637. We now consider some small

sample results.

Table 3 summarizes the results for inference about the median when λ is
fixed at 0, 1 and 1/2. As in the case of inference about the mean, we see
that the coarsened inference is nearly as accurate as the correct parametric
inference. However, as expected, there is a loss of efficiency when using the
sample median since it is not a sufficient statistic for either parametric dis-
tribution. The parametric models tend toward smaller confidence intervals
but with incorrect coverage probabilities when the model is wrong. Using an
incorrect model results in increasingly poor results as sample size increases
- similar to the results found for inference about the mean. Assuming the
Lognormal model when the correct model is Exponential leads to coverage
probabilities ranging from 93% down to 21% for sample sizes of 10 to 250,
respectively.

Furthermore, and in contrast to the results obtained for inference about
the mean, the assumption of the Exponential model when the data actually
come from the Lognormal distribution also results in very poor coverage prob-
abilities: For a sample size of 10 the coverage probability is approximately
only 93% and worsens to an approximate coverage of 56% for a sample size
of 250. We also note that the accuracy of the coarsened approach is not as
good as one might hope: the nominal 95% credible intervals only cover the
true θ approximately 93% of the time even in the larger sample sizes.

The failure of the coarsened approach to attain 95% coverage is at least
in part due to the way we estimated the nuisance parameter cλ and then
treated it as known. We explore this further by considering a simulation
study of median estimation when the data come from a random λ-mixture of
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Table 3

Summary of results of simulation study for inference on a population
median. Based on 10,000 simulated datasets for each p(y|θ) and sample size

(n) combination. Monte Carlo error for proportions:
√

(0.95)(0.05)/10000 ≈ 0.002.

coverage probability mean interval width
true assumed p(y|θ) assumed p(y|θ)

p(y|θ) exp lnorm coarse exp lnorm coarse

n= 10 0.947 0.932 0.923 3.723 3.763 3.720
n= 25 0.951 0.896 0.931 3.488 3.522 3.618

Exponential n= 40 0.946 0.838 0.930 3.296 3.298 3.501
n=100 0.947 0.611 0.935 2.756 2.647 3.157
n=250 0.950 0.212 0.934 2.085 1.874 2.619

n= 10 0.933 0.947 0.925 3.690 3.733 3.689
n= 25 0.920 0.951 0.935 3.443 3.488 3.556

Lognormal n= 40 0.892 0.947 0.932 3.248 3.290 3.404
n=100 0.797 0.948 0.937 2.754 2.743 3.002
n=250 0.559 0.947 0.937 2.159 2.070 2.413

n= 10 0.939 0.936 0.919 3.710 3.747 3.703
n= 25 0.937 0.929 0.933 3.463 3.504 3.588

50/50 mixture n= 40 0.927 0.918 0.934 3.270 3.294 3.457
n=100 0.897 0.847 0.935 2.756 2.700 3.084
n=250 0.813 0.660 0.934 2.125 1.980 2.515
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Exponential and Lognormal distributions. We consider a hierarchy of model
assumptions where the inference is based on increasing levels of approxima-
tion for the posterior distribution:

1. p(~y|θ, cλ)p(θ, cλ) - a full parametric model for θ and λ;

2. p̂(t(~y)|θ, cλ)p(θ, cλ) - a halfway coarsened approach using the approx-
imate Normal distribution for the sample median but estimating the
nuisance parameter cλ using the distribution of λ obtained from the
full parametric analysis (this allows us to gain some insight into our
bootstrap estimation of the nuisance parameter);

3. p̂(t(~y)|θ, ĉλ)p(θ) - the fully coarsened nonparametric approach where
the nuisance parameter is estimated via the bootstrap and then treated
as known.

Table 4 displays results of this last simulation study. In terms of frequen-
tist criteria our average coverage probabilities are maintained at a reasonably
high level and are clearly improving with increasing sample size. As for ef-
ficiency, there is some loss - mainly due to the insufficiency of the sample
median on which our inference is based. We again note that the loss in accu-
racy is due in part to our plug-in estimate of the nuisance parameter in the
fully coarsened approach. We believe that the lower average coverage proba-
bility is due to the failure to account for the uncertainty in the estimation of
the variance. Finally, we note that there is no apparent additional efficiency
loss related to the estimation of the nuisance parameter.

We also turn to Table 4 as we consider a Bayesian interpretation of our
results. If one considers the results from the full parametric analysis as
“truth” then, by definition, each individual 95% posterior credible interval
we construct contains exactly 95% of the posterior probability. As we re-
move parametric assumptions and consider the halfway and fully coarsened
approaches, however, our individual credible intervals are not necessarily in
agreement. As compared to the fully parametric model sometimes an in-
dividual coarse credible interval contains less, and sometimes more, of the
posterior probability. That is, in the coarsened approach we may “on av-
erage” have 95% coverage probability but not necessarily always have 95%
coverage. The last column of the table provides some information regard-
ing the distribution of posterior coverage probabilities under the assumption
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Table 4

Summary of results of simulation study for inference about a median from a
mixture distribution. Based on 10,000 simulated datasets for each sample

size (n). Monte Carlo error for proportions:
√

(0.95)(0.05)/10000 ≈ 0.002.
The last column gives information regarding the distribution of the posterior

coverage probabilities as compared to the full parametric model.

method coverage mean distribution of posterior
probability interval coverage probability

width (10%, 90%)

full parametric model 0.947 3.736 -
n=10 coarsened θ, parametric λ 0.940 3.752 (0.916, 0.965)

coarsened θ, bootstrap cλ 0.925 3.702 (0.891, 0.964)

full parametric model 0.951 3.519 -
n=25 coarsened θ, parametric λ 0.944 3.626 (0.913, 0.968)

coarsened θ, bootstrap cλ 0.934 3.591 (0.894, 0.968)

full parametric model 0.945 3.338 -
n=40 coarsened θ, parametric λ 0.940 3.510 (0.911, 0.971)

coarsened θ, bootstrap cλ 0.924 3.456 (0.884, 0.971)

full parametric model 0.951 2.820 -
n=100 coarsened θ, parametric λ 0.948 3.127 (0.903, 0.978)

coarsened θ, bootstrap cλ 0.934 3.083 (0.876, 0.980)

full parametric model 0.947 2.155 -
n=250 coarsened θ, parametric λ 0.946 2.539 (0.891, 0.984)

coarsened θ, bootstrap cλ 0.940 2.515 (0.863, 0.987)

that the full parametric model is correct. When n=10, for example, we see
that 80% of the intervals computed using the halfway coarsened approach
cover between 92% and 97% of the posterior probability as measured by the
full parametric model. For the fully coarsened approach 80% of the inter-
vals contain between 89% and 96% of the same posterior probability. Thus
we see that, for specific posterior credible intervals, there is not necessarily
agreement among the approaches.
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5. A real data example

Zhou and Gao Zhou and Gao (1997), compare four methods of constructing
confidence intervals for the mean of skewed data having an approximately
Lognormal distribution. The four methods considered are:

1. naive method - the exponentiation of a Wald-type interval based on
log-transformed data;

2. Angus’ conservative method - based on an approximate pivotal statis-
tic;

3. parametric bootstrap - a bootstrap interval based on the approximate
pivotal statistic used in Angus’ method;

4. Cox’s method - based on the UMVU estimators for log θ and its variance
under the assumed Lognormal distribution.

Simulation studies revealed that the naive method fails - the coverage
error increases with σ2 and with increases in sample size. For smaller sample
sizes the bootstrap method has the smallest coverage error. Angus’ method
always gives too wide intervals but shows improvement as sample size in-
creases. The Cox method has smallest error for moderate sample size (around
n=50) and is comparable to the bootstrap for small samples when σ2 is large.
Also, the Cox method has the smallest intervals among the three appropriate
methods. It is not clear how robust the Cox and bootstrap methods are.

The authors also apply the four methods to a real data set consisting
of 355 measures of hospital charges following knee replacement procedures.
The sample mean is $9620.8, the sample median is $8917.9 and the sample
standard deviation $3455.3. The data are noticeably right skewed (see Figure
2).

The reported 90% confidence intervals for the mean are:

method CI width
naive (8839.6, 9363.7) 524.1
conservative (9325.4, 9924.9) 599.5
bootstrap (9330.1, 9897.1) 567.0
Cox (9326.4, 9893.2) 566.8
coarse (9336.9, 9896.3) 559.4
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Figure 2. Histogram of the hospital charges following knee surgery from
the paper by Zhou and Gao, 1997.
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Based on the proposed coarsened approach using a noninformative prior we
estimate a 90% confidence interval of (9336.9, 9896.3) with a width of 559.4
- comparable to both the bootstrap and Cox method.

For this particular health cost study inference about the mean was of
primary interest. At other times and in the presence of such skewed data
sociological questions might be better addressed by median inference. With
the proposed coarsened approach it is a simple matter to obtain a confi-
dence interval for the median. Using a noninformative prior we obtain a
90% confidence interval of (8658.0, 9183.8). It is also possible, if desired, to
place an informative prior specifically on the mean or median rather than
the parameters µ and σ of the standard parameterization of the Lognormal
distribution.

6. Discussion

Nonparametric inference may be problematic in the presence of a mean-
variance relationship. Parametric Bayesian methods account for a mean-
variance relationship in an accurate and natural manner if the proposed
parametric model is correct, but such models are not usually robust to mis-
specification. Standard nonparametric Bayesian methods can be more robust
but are relatively complicated and the probability space is cumbersome as
compared to that of standard frequentist models. As a simple and robust
alternative, we propose replacing L(θ|~y) in the standard Bayesian parametric
analysis by an approximate sampling distribution that might be used in a
nonparametric frequentist procedure. Our use of Bayesian methodology with
the proposed replacement for the parametric likelihood allows us to account
for a mean-variance relationship while attaining robustness to model mis-
specification. The method is intuitive and relatively simple to implement.
An additional advantage of this approach is that by basing nonparametric
Bayesian and frequentist inference on the same probability models, Bayesian
analyses are made more accessible and communicable to the larger scientific
community. Among applications, in the setting of group sequential clinical
trials, the use of the coarsened approach facilitates the evaluation of clinical
trial designs and the reporting of results in both frequentist and Bayesian
contexts. In order to address the population of priors represented in the
medical community, Bayesian inference can be represented graphically via
a sensitivity analysis using the coarsened approach and a range of Normal
priors Emerson et al. (2003).
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A few key issues regarding the coarsened approach need to be addressed.
We began by assuming the mean-variance relationship to be known and then
introduced a nuisance parameter. We explored our ability to handle a nui-
sance parameter by crude methods as well as by use of formal prior distrib-
utions. If the method makes use of a formal prior can it still be considered
nonparametric? We believe the answer is: Yes. In the real world the mean-
variance relationship is nonidentifiable in general, and any formal prior placed
on it is in essence a sensitivity analysis. Perhaps, then, a sensitivity analysis
to a prior should be considered. Broadly, the nexus of the mean-variance re-
lationship, prior distributions and model assumptions needs to be formalized.

In more practical terms we are currently researching extensions to more
general classes of unknown mean-variance relationships given more than a
single sample. Also of interest is a reasonable method of comparison to the
standard nonparametric Bayesian approach that somehow limits priors to
particular classes of mean-variance relationships.
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