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On the Use of Stochastic Curtailment in

Group Sequential Clinical Trials

Abstract

Many different criteria have been proposed for the selection of a stopping
rule for group sequen- tial trials. These include both scientific (e.g., estimates of
treatment effect) and statistical (e.g., frequentist type I error, Bayesian poste-
rior probabilities, stochastic curtailment) measures of the evidence for or against
beneficial treatment effects. Because a stopping rule based on one of those cri-
teria induces a stopping rule on all other criteria, the utility of any particular
scale relates to the ease with which it allows a clinical trialist to search for
sequential sampling plans having de- sirable operating characteristics. In this
paper we examine the use of such measures as conditional power and predictive
power in the definition of stopping rules, especially as they apply to decisions
to terminate a study early for “futility”. We illustrate that stopping criteria
based on stochastic curtailment are relatively difficult to interpret on the scien-
tifically relevant scale of estimated treat- ment effects, as well as with respect
to commonly used statistical measures such as unconditional power. We further
argue that neither conditional power nor predictive power adhere to the stan-
dard optimality criteria within either the frequentist or Bayesian data analysis
paradigms. Thus when choosing a stopping rule for “futility”, we recommend
the definition of stopping rules based on other criteria and careful evaluation
of the frequentist and Bayesian operating characteristics that are of greatest
scientific and statistical relevance.
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1 Introduction

Sequential stopping rules are often used in clinical trials to address efficiency and ethical issues that

arise in human experimentation. Group sequential stopping rules which maintain desired frequentist

operating characteristics (e.g., type I and II error rates) were first described for situations in which

early termination of the clinical trial was considered when interim results were so extreme as

to suggest a beneficial effect of a new treatment.[1, 2] However, it is now also quite common for

clinical trialists to choose stopping rules which allow for early stopping when all clinically important

beneficial treatment effects have been credibly eliminated. Such boundaries are often referred to

as “futility” boundaries, because they are meant to identify those settings in which it is futile to

continue the clinical trial: The results of the clinical trial are unlikely to lead to adoption of the

new therapy, and no further useful information will be obtained by continuing the study.

The statistical and clinical trials methodology literature is replete with alternative criteria to

be used for the specification of a stopping rule, including stopping boundaries defined for the

efficient score [3, 4, 5], normalized Z statistic and/or fixed sample P value [1, 6], crude estimate

of the treatment effect [7], error spending functions [8, 9], Bayesian posterior probabilities [10, 11],

conditional power [12, 13], and predictive power [14]. In companion papers to this manuscript,

we have discussed the 1:1 correspondence between these various stopping boundary scales, arguing

that the criterion used to define a stopping boundary is less important than the evaluation of the

frequentist [15] and Bayesian [16] operating characteristics associated with it. In neither of those

papers, however, did we address the evaluation of the stochastic curtailment measures of conditional

and predictive power. This omission was purposeful.

When collaborating on a sequential clinical trial design, we often find that some of our collab-

orators will ask questions related to whether a trial stopped early with one decision would have

proceeded to the opposite conclusion at the final analysis. When computed in the setting of early

stopping with a failure to reject the null hypothesis, the probability of such a reversal of decisions

is often regarded as a measure of the “futility” of continuing the trial: If there is only a low prob-

ability that the trial would obtain results allowing rejection of the null hypothesis, then it might
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seem futile to continue collecting data.

Our response to such questions is to demonstrate the conflicting answers that arise from the

varied approaches to stochastic curtailment: conditional power under different hypotheses and

predictive power under different priors. We then discuss the foundational inconsistencies with

stochastic curtailment measures under either frequentist or Bayesian paradigms and present al-

ternative measures of the “futility” of continuing a clinical trial based on the tradeoffs between

unconditional power and average sample size. It has been our experience that no given group of

collaborators has ever again asked about stochastic curtailment measures. In this paper, we amplify

on this presentation in the context of the sepsis clinical trial used as the example in the companion

papers.

In section 2, we provide a brief review of the scientific setting and basic statistical design of

the clinical trial. In section 3 we discuss statistical paradigms which might be used as a basis for

a decision to terminate a clinical trial early. We present the correspondence between stopping rule

thresholds defined for the efficient score, the crude estimate of treatment effect, conditional power,

and predictive power. We then illustrate some of the difficulties that arise when using stochastic

curtailment as a criterion for a stopping rule. We conclude in section 4 with some general comments

regarding the alternatives to stochastic curtailment measures.

2 Example Used for Illustration

We illustrate our approach in the context of a randomized, double-blind, placebo-controlled clinical

trial of an antibody to endotoxin in the treatment of gram-negative sepsis. Details of the scientific

setting and the clinical trial design are provided in the companion paper [15].
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2.1 Notation and Sample Size

Briefly, a maximum of 1,700 patients with proven gram-negative sepsis were to be randomly assigned

in a 1:1 ratio to receive a single dose of antibody to endotoxin or placebo. The primary endpoint

for the trial was to be the 28 day mortality rate, which was anticipated to be 30% in the placebo

treated patients and was hoped to be 23% in the patients receiving antibody. Notationally, we let

Xki be an indicator that the i-th patient on the k-th treatment arm (k=0 for placebo, k= 1 for

antibody) died in the first 28 days following randomization. Thus Xki = 1 if the i-th patient on

treatment arm k dies in the first 28 days following randomization, and Xki = 0 otherwise. We are

interested in the probability model in which the random variables Xki are independently distributed

according to a Bernoulli distribution B(1, pk), where pk is the unknown 28 day mortality rate on

the k-th treatment arm. We use the difference in 28 day mortality rates θ = p1 −p0 as the measure

of treatment effect.

Supposing the accrual of nk subjects on each treatment arm, a frequentist analysis of clinical

trial results would be based on the asymptotic arguments which suggest that p̂k =
∑nk

i=1 Xki/nk is

approximately normally distributed with mean pk and variance pk(1 − pk)/nk. We therefore have

an approximate distribution for the estimated treatment effect θ̂ = p̂1 − p̂0 of

θ̂ ∼̇ N
(

θ,
p1(1 − p1)

n1
+

p0(1 − p0)

n0

)

. (1)

As is customary in the setting of tests of binomial proportions, at the time of data analysis the

actual frequentist test statistic would estimate a common mortality rate p̂ under the null hypothesis

of no treatment effect. Thus, if at the time of data analysis n0 and n1 patients had been accrued to

the placebo and treatment arms, respectively, and the respective observed 28 day mortality rates

were p̂0 and p̂1, the statistic used to test the null hypothesis would be

Z =
p̂1 − p̂0

√

p̂(1 − p̂)
(

1
n1

+ 1
n0

)

,
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where the common mortality rate under the null hypothesis would be estimated by

p̂ =
n1p̂1 + n0p̂0

n0 + n1
.

When using probability models in which the statistical information grows in direct proportion

to sample size, standard formulas for sample size calculation describe the interrelationship between

sample size, statistical size and power, and an alternative hypothesis according to

n =
δ2
αβV

∆2
, (2)

where n is the sample size on each treatment arm which provides statistical power β to detect a

treatment effect ∆ using a level α hypothesis test. In this formula, V is the variance contributed

by a single sampling unit (e.g., a patient accrued to each of the treatment arms), and δαβ is the

alternative which is detected with statistical power β using a standardized level α trial design (e.g.,

a design appropriate for a study having only one sampling unit accrued).

In the setting of the sepsis trial, ∆ would represent the difference θ = p1−p0 in 28 day mortality

rates, and V = p1(1− p1) + p0(1− p0) would be the contribution to the variance of θ̂ from a single

sampling unit consisting of a patient accrued to each treatment arm. In a fixed sample study using

an asymptotically normally distributed test statistic, the standardized alternative for which a one-

sided level α test is detected with statistical power β is δαβ = z1−α + zβ , where zp = Φ−1(p) is the

p-th quantile of a standard normal distribution having cumulative distribution function Φ(z). Using

this formula and assuming the variability of the estimate under the design alternative hypothesis

of p0 = 0.30 and p1 = 0.23, we calculate that accruing 1700 patients (N = 850 per arm) yields

statistical power of 0.907 in a level 0.025 hypothesis test of the null hypothesis H0 : p0 = p1.

In a fixed sample study, the 1,700 subjects (850 per arm) provide statistical power of 0.9066 to

detect the design alternative of θ = −0.07 when the control group’s 28 day mortality rate is 30%.

If the estimated variability of θ̂ at the conclusion of such a trial were to agree exactly with the

variance used in the sample size calculation, the null hypothesis would be rejected in a frequentist
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hypothesis test if the absolute difference in 28 day mortality rates showed that the mortality on

the antibody arm was at least .0418 lower than that on the placebo arm (i.e., we would reject

H0 if and only if θ̂ < − 0.0418). The precision provided by the planned sample size can also

be characterized by the hypotheses that can be discriminated by a 95% confidence interval. For

instance, a clinical trial result corresponding to the greatest observed treatment effect which still

does not allow rejection of the null hypothesis (so θ̂ just greater than -0.0418) would allow a 95%

confidence interval for θ of -0.084 to 0.000. Hence, in such a fixed sample clinical trial a failure to

reject the null hypothesis could with 95% confidence be viewed as ruling out as much as an 8.4%

improvement in 28 day mortality.

2.2 Definition of Stopping Rules

Stopping rules are introduced into clinical trial design in order to allow early termination of a

trial when the ultimate decision is known with high confidence. Such a stopping rule defines the

conditions under which accrual of new information will be halted. Typically, the conditions for early

stopping are defined in the context of some statistic estimating the scientific measure of treatment

effect or the statistical measures of our confidence in some decision.

Notationally, a stopping rule is defined for a schedule of analyses occurring at sample sizes N1,

N2, . . . , NJ , where we define Nj as the total number of observations accrued by the time of the jth

analysis. For j = 1, . . . , J , we calculate a statistic Tj based on the first Nj observations. Common

choices for Tj include the maximum likelihood estimate θ̂j, a normalized Z statistic based on

the null hypothesis, a P value, Bayesian posterior probabilities, Bayesian predictive probabilities,

or conditional power. The outcome space for Tj is then partitioned into stopping set Sj and

continuation set Cj . Starting with j = 1, the clinical trial proceeds by computing test statistic

Tj , and if Tj ∈ Sj , the trial is stopped. Otherwise, Tj is in the continuation set Cj , and the trial

gathers observations until the available sample size is Nj+1. By choosing CJ = ∅, the empty set,

the trial must stop at or before the J-th analysis.

As noted in the companion paper [15], for this placebo controlled trial, it seems reasonable
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to restrict attention to stopping rules having at most two boundaries, i.e., stopping rules with

continuation sets of the form Cj = (aj , dj) such that −∞ < aj < dj < ∞. In the example sepsis

trial, the test statistic was defined such that interim results which were less than aj would be

suggestive of a truly beneficial treatment, and hence this lower boundary is often referred to as the

“efficacy boundary” for the candidate stopping rules. Similarly, interim results which exceeded dj

would be suggestive of a treatment which was not as efficacious as hoped for. For reasons described

more fully in the next section, this upper boundary is referred to as the “futility boundary”.

Particular families of group sequential designs correspond to parameterized boundary functions

which relate the stopping boundaries for some specified statistic Tj at successive analyses according

to the proportion of statistical information accrued and some hypothesized treatment effect. For

instance, letting Πj represent the proportion of the maximal statistical information available at

the j-th analysis (e.g., Πj = Nj/NJ for the most commonly used analytic models), then for some

specified parametric function fd(), the boundary function for the upper boundary might be given by

dj = fd(θd,Πj), where θd is some hypothesis of relevance to the computation of that boundary (e.g.,

the hypothesis rejected when Tj > dj , the null or alternative hypothesis, or the current best estimate

of the treatment effect). Furthermore, many of the group sequential design families previously

described can be expressed in a parameterization which has dj = f(θd, g(Πj ;Ad, Pd, Rd, Gd)) with

boundary shape function

g(Π;A,P,R,G) = (A + Π−P (1 − Π)R)G

where parameters A, P , and R are typically specified by the user to attain some desired level of

conservative behavior at the earliest analyses, and critical value G might be found in an iterative

search to attain some specified operating characteristics (e.g., frequentist type I error and power)

when the stopping rule is to be used as the basis of a decision rule [7]. The way in which the

boundary shape function is combined with the boundary hypothesis will depend upon the exact

form of the test statistic, and contrasting the intuitive appeal of some of the different approaches is

the major topic of this paper. However, as discussed in the companion papers, stopping boundaries
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defined for one test statistic induce stopping boundaries for all other statistics commonly used in

specifying stopping rules. Thus, it is largely immaterial how the stopping rule is initially defined,

so long as the operating characteristics of the stopping rule are adequately evaluated.

For the purposes of our illustration, we consider several of the stopping rules actually consid-

ered during the design of the sepsis clinical trial. As this paper focuses primarily on the choice

of “futility” boundary for the sequential sampling plan, we will restrict attention to fixed sample

designs and stopping rules having an O’Brien-Fleming “efficacy” boundary combined with several

candidate “futility” boundaries. Using the nomenclature from the companion paper [15], we con-

sider level 0.025 one-sided hypothesis tests appropriate for testing a null hypothesis H0 : θ ≥ 0

versus the lesser alternative H1 : θ < − 0.07. The variability of the estimate of treatment effect

was assumed to be that which would occur if the 28 day mortality were 30% on the placebo arm

and 23% on the antibody arm. Specific futility stopping boundaries examined reflect a spectrum

of strategies for defining such boundaries.

3 Criteria for Early Decisions Against Efficacy

Our goal in this paper is to contrast two alternative approaches to selection of “futility boundaries”:

decision theoretic and stochastic curtailment. These two approaches differ primarily in the way

they use the “boundary hypothesis”– the hypothesized treatment effect used to compute a stopping

boundary. In the decision theoretic approach, the futility stopping boundary can be parameterized

by criteria for rejection of the boundary hypothesis. This is the approach used in such families as

the triangular and double triangular test [3], the symmetric designs [4], the asymmetric designs

of Pampallona and Tsiatis [5], the unified family [7], error spending families which consider type

II as well as type I error [9, 17], and families defined for Bayesian posterior probabilities. In

the stochastic curtailment approach, the futility stopping boundary considers the conditional or

Bayesian predictive probability that a final study result would correspond to rejection of the null.

The magnitude of such a probability depends of course on some hypothesized treatment effect (or

distribution for the treatment effect in the case of Bayesian inference), and the boundary hypothesis
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is used as that hypothesized effect. In order to make clear these distinctions, we first review the

statistical basis for frequentist clinical trial design, and then describe in more detail each of the two

approaches.

3.1 Frequentist Clinical Trial Design

The most common paradigm for clinical trial design is based on classical frequentist hypothesis

testing. Treatment effect is measured by some parameter θ, which is typically some comparison

(difference or ratio) of summary measures from probability distributions (e.g., means, medians,

proportions exceeding some threshold, time averaged hazards). The user specifies a null hypothesis

H0 : θ = θ0 corresponding to a treatment having no effect. Ideally, the sample size is then chosen

to provide sufficient precision to be able to reject the null hypothesis with high power when some

“design alternative” H1 : θ = θ1 is true, where θ1 would represent some minimal treatment effect

that is clinically important. “Sufficient precision” is typically taken to mean that the trial would

have high probability of rejecting the null hypothesis under the design alternative, with choices

of power in the range of 80% to 97.5% being common. Alternatively, sample size can be chosen

according to the width of, say, a 95% confidence interval– an approach that corresponds exactly to

a choice of power of 97.5%. In practice, however, logistical constraints are often the limiting factor,

and our ability to accrue patients becomes a major criterion in the definitions of the “minimal

treatment effect that is clinically important” and “sufficient precision”.

No matter whether the values of θ1 and statistical power are chosen purely on scientific and clin-

ical grounds or whether the logistical constraints are the dominating factor, any given clinical trial

design can be viewed as an experiment to discriminate between hypotheses. This was illustrated

in section 2.1 using the fixed sample design for the sepsis trial. In that clinical trial design, a 0.025

level of significance was chosen for rejection of the null hypothesis, and it was desired to have a 90%

chance of obtaining statistically significant results when the difference in 28 day mortality rates was

θ = −0.07. However, as also noted in section 2.1, the sample size of 1700 subjects was not sufficient

to discriminate with 95% confidence between the null hypothesis and the “design alternative” of
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-0.07. Instead, it is possible that an estimated treatment effect of θ̂ = −0.0417 might be observed,

with a failure to reject the null hypothesis with a P value of 0.0253 just greater than 0.025 and a

95% confidence interval for θ of -0.0835 to 0.0001. Such a confidence interval has clearly not ruled

out the design alternative of -0.07, although it does necessarily rule out the alternative θ = 0.0837

for which the study had 97.5% power.

3.2 Decision Theoretic Approach

The decision theoretic approach to a futility stopping boundary chooses thresholds for early ter-

mination of a study according to rejection of the alternative to be discriminated from the null

hypothesis. The approach here is to define the futility stopping boundary in a manner that is ex-

actly analogous to that used for early stopping with a decision for efficacy. Thus, a clinical trial is

stopped early for futility when the data provides sufficient evidence that the alternative hypothesis

is not true, with some allowance for conservatism at the earliest analyses.

A number of equivalent test statistics are commonly used in the definition of an efficacy stopping

rule for a one-sided test of a lesser hypothesis. In the context of the sepsis trial introduced in section

2.1, suppose that at the j-th analysis we had accrued N0j = N1j = Nj subjects to the placebo and

antibody arms, respectively, and that the random variables measuring the corresponding observed

number of patients dying within 28 days were Y0j =
∑N0j

i=1 X0i and Y1j =
∑N1j

i=1 X1i. For the

instance in which we observe Y0j = y0j and Y1j = y1j, for a one-sided hypothesis test of a lesser

hypothesis an efficacy stopping boundary in the unified family of group sequential designs [7] rejects

H0 : θ ≥ θ0 with (lower) type I error α if θ̂j < a
(θ̂)
j , where

a
(θ̂)
j = θ0 − (Aa + Π−Pa

j (1 − Πj)
R
a )Ga

for suitably chosen design parameters Aa, Pa, Ra, and Ga. The analogous approach to a futility

stopping boundary thus rejects H1 : θ < θ1 with (upper) type II error β if θ̂j ≥ d
(θ̂)
j , where

d
(θ̂)
j = θ1 + (Ad + Π−Pd

j (1 − Πj)
R
d )Gd
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for suitably chosen design parameters Ad, Pd, Rd, and Gd. In particular, the design parameters are

chosen such that a
(θ̂)
J = d

(θ̂)
J to force stopping at the Jth analysis and such that

α =
J
∑

ℓ=1

Pr

[

θ̂ℓ < a
(θ̂)
ℓ ,

ℓ−1
⋂

k=1

a
(θ̂)
k < θ̂k < d

(θ̂)
k |θ = θ0

]

β =

J
∑

ℓ=1

Pr

[

θ̂ℓ ≥ d
(θ̂)
ℓ ,

ℓ−1
⋂

k=1

a
(θ̂)
k < θ̂k < d

(θ̂)
k |θ = θ1

]

,

to obtain the desired type I and type II errors. Note that the choice α = β results in the same

statistical criteria to be used in rejecting the null and alternative hypotheses, and with such a choice

the discrimination between the null and alternative hypotheses is exactly equivalent to inference

based on a 100(1 − 2α)% confidence interval for θ.

These stopping boundaries could also be converted to a number of equivalent boundary scales

suitable for comparing to other test statistics:

1. Partial sum statistic: Sj = sj = y1j − y0j , which represents the difference in the number

of deaths between the two arms. The partial sum statistic was used for the definition of

stopping rules by Whitehead and Stratton [3], Emerson and Fleming [4], and Pampallona

and Tsiatis [5]. An O’Brien-Fleming [2] boundary rejecting a null hypothesis of no treatment

effect is constant on the scale of this statistic. Conversion of the unified family stopping

boundary to this scale results in rejection of H0 if Sj < a
(S)
j and rejection of H1 if Sj ≥ d

(S)
j

where a
(S)
j = Nja

(θ̂)
j and d

(S)
j = Njd

(θ̂)
j .

2. Normalized Z statistic: Zj = zj = (θ̂j−θ0)/se(θ̂j) =
√

Nj(θ̂j−θ0)/σ where se(θ̂j) ≡ σ/
√

Nj is

typically estimated as described in section 2 using σ̂ =
√

2p̂(1 − p̂) when sample sizes are equal

on the two treatment arms. The normalized Z statistic was used for the definition of stopping

rules by Wang and Tsiatis [6]. A Pocock [1] boundary rejecting a null hypothesis H0 : θ = θ0

of no treatment effect is constant on the scale of this statistic. Conversion of the unified

family stopping boundary to this scale results in rejection of H0 if Zj < a
(Z)
j and rejection

of H1 if Zj ≥ d
(Z)
j where a

(Z)
j =

√

Nj(a
(θ̂)
j − θ0)/σ and d

(Z)
j =

√

Nj(d
(θ̂)
j − θ0)/σ. While the
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normalized Z statistic Zj is defined in the form used for rejecting the null hypothesis, stopping

boundaries could have been defined equally easily for rejecting the alternative hypothesis as

Z∗

j =
√

Nj(θ̂j − θ1)/σ = Zj −
√

Nj(θ1 − θ0)/σ,

thus showing the parallels between the form of the efficacy and futility boundaries.

3. Fixed sample P value statistic: Pj = Φ(zj), which would represent the lower one-sided P value

if the observed data had been gathered in a fixed sample study. In clinical trial designs which

allow for early stopping, however, this scale does not represent a true P value and is therefore

not easily interpreted. Nevertheless, based on the findings of Pocock [1], this statistic is

of some use when implementing a group sequential stopping rule derived using asymptotic

theory. In that research it was found that the statistical properties of such stopping rules were

relatively invariant when used with fixed sample P values computed for statistics having other

distributions (e.g., the t distribution). Conversion of the unified family stopping boundary

to this scale results in rejection of H0 if Pj < a
(P )
j and rejection of H1 if Pj ≥ d

(P )
j where

a
(P )
j = Φ(

√

Nj(a
(θ̂)
j − θ0)/σ) and d

(P )
j = Φ(

√

Nj(d
(θ̂)
j − θ0)/σ).

4. Error spending statistic: An error spending statistic can be defined for any of the four bound-

aries based on an arbitrary hypothesized value for the true treatment effect. For instance, if

a group sequential stopping rule were defined for the partial sum statistic and the observed

value of the test statistic at the j-th analysis were Sj = sj, the type I error spending statistic

defined for the null hypothesis H0 : θ = θ0 is

Eaj =
1

α

(

Pr

[

Sj < sj ,

j−1
⋂

k=1

a
(S)
k < Sk < d

(S)
k | θ = θ0

]

+

j−1
∑

ℓ=1

Pr

[

Sℓ < a
(S)
ℓ ,

ℓ−1
⋂

k=1

a
(S)
k < Sk < d

(S)
k | θ = θ0

])

,

and the type II error spending statistic defined for the alternative hypothesis H1 : θ = θ1 is

Edj =
1

β

(

Pr

[

Sj ≥ sj ,

j−1
⋂

k=1

a
(S)
k < Sk < d

(S)
k | θ = θ0

]

+

j−1
∑

ℓ=1

Pr

[

Sℓ ≥ d
(S)
ℓ ,

ℓ−1
⋂

k=1

a
(S)
k < Sk < d

(S)
k | θ = θ0

])

.

The error spending scale is used for the computation of the stopping boundaries using the

methods of Lan and DeMets [8], Pampallona, Tsiatis, and Kim [9], and others [17, 18].
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Computation of the probabilities used for this scale generally requires recursive numerical

integration as described by Armitage, McPherson, and Rowe [19].

5. Bayesian posterior probabilities: The decision theoretic approach can also be used when

Bayesian posterior probabilities are the basis for rejection of hypotheses. This approach

is discussed in detail in the companion paper on Bayesian evaluation of group sequential

stopping rules [20].

3.3 Stochastic Curtailment Approach

In the stochastic curtailment approach to a futility stopping boundary, the criterion for early

stopping is based on a measure of the probability that the null hypothesis would eventually be

rejected at the final analysis. This approach includes computations of frequentist conditional power

and Bayesian predictive power.

Conditional power is the frequentist conditional probability that the test statistic at the final

(J-th) analysis would exceed the threshold for declaring statistical significance, where we condition

on the observed statistic Sj = sj at the j-th analysis and assume some particular value for the

true treatment effect θ [21]. The conditional power at the j-th analysis is computed by noting that

under the independent increment structure of information accrual, the test statistic at the final

(J-th) analysis is a weighted average of the analogous test statistic at the j-th analysis and an

increment of information accrued between the j-th analysis and the (J-th) analysis. We condition

on the observed results at the interim analysis, and we compute the sampling distribution of the as

yet unobserved increment under some presumption of the true treatment effect θ. Common choices

for the hypothesized value of θ to use in these calculations are the null hypothesis θ = θ0 (especially

when considering interim results that lead to early stopping for efficacy), the alternative hypothesis

θ = θ1 (especially when considering interim results that lead to early stopping for futility), or the

current crude estimate of treatment effect θ = θ̂j.

These computations most often ignore any effect of a stopping rule on the sampling density for
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the data observed to date, and presume a distribution corresponding to a fixed sample study. For

instance, when considering whether to stop a clinical trial due to the futility of obtaining results

which would change clinical practice, we might define a conditional power statistic using an efficacy

threshold a
(S)
J defined for the partial sum statistic. Such a threshold would represent the critical

value for declaring statistical significance at the J-th analysis. Using large sample results and an

alternative hypothesis H1 : θ = θ1, we might compute conditional power as

Cj(a
(S)
J , θ1) = Pr(SJ < a

(S)
J |Sj = sj; θ = θ1)

= Φ

(

a
(S)
J − sj − (NJ − Nj)θ1]

σ
√

(NJ − Nj)

)

.

The statistic Cj based on this conditional power can be used as a basis for a futility stopping

rule if we stop the clinical trial for futility when Cj ≥ d
(C)
j for a suitable set of thresholds d

(C)
j

for j = 1, . . . , J − 1. (Note that unlike the statistics described for the decision theoretic approach

where high values of the test statistic were suggestive of futility in the one-sided test of a lower

alternative, a low value for the conditional power statistic will tend to lead to early stopping for

futility).

It is often the case that futility rules based on conditional power use a constant threshold

across successive analyses, with values of d
(C)
j = 0.10 or 0.20 chosen by many users. However, as

with stopping rules based on other statistics, a boundary shape function can be used to describe

thresholds that might make it easier to stop for futility as the statistical information accrues. It is

also possible to describe futility stopping rules that are based on conditional power statistics that

use different values of θ at the different analyses. For instance, a conditional power statistic might

use the current best estimate of the treatment effect θ̂j [22] or the lower limit of, say, a fixed sample

95% confidence interval for θ computed at the jth analysis. Futility measures based on conditional

power have been proposed for use when stopping a clinical trial early is to be based on stochastic

curtailment [21, 12], as well as for adaptive redesign of a clinical trial [23].

It should be clear that there is a 1:1 correspondence between stopping rules defined under the

decision theoretic approach and those defined using stochastic curtailment, because the conditional
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power statistic defined above is a monotonic transformation of the partial sum statistic. It is

thus of some interest to examine how stochastic curtailment futility boundaries relate to designs

within the unified family of group sequential stopping rules. For instance, the futility boundary

within the unified family will be of the form d
(S)
j = Nj(θ1 + (Ad + Π−Pd

j (1 − Πj)
Rd)Gd), with

an efficacy boundary of the form a
(S)
j = Nj(θ0 − (Aa + Π−Pa

j (1 − Πj)
Ra)Ga). The constraint

that a
(S)
J = d

(S)
J dictates that the threshold for statistical significance at the final analysis is

a
(S)
J = NJ(θ0 − (Aa + 0Ra)Ga) = NJ(θ1 + (Ad + 0Rd)Gd). Inserting these formulas into the formula

for the conditional power with Πj = Nj/NJ and sj = d
(S)
j yields

Cj(a
(S)
J , θ1) = Φ

(

NJ0RdGd + NJAdGd(1 − Πj) − NJΠ−Pd+1
j (1 − Πj)

Rd

σ
√

NJ − Nj

)

,

which is constant across analyses (i.e., independent of j) if Ad = 0, Pd = 1, and Rd = 0. In that

case, which corresponds to an O’Brien-Fleming boundary shape function, Cj(a
(S)
J , θ1) = 0.5 at each

analysis. This also suggests that no other useful member of the unified family will correspond to a

constant conditional power when computed under a single alternative.

We can also examine the conditional power futility rule when computed under the maximum

likelihood estimate of treatment effect at each analysis. In that case, at the jth analysis, we compute

Cj(a
(S)
J , θ̂j), with θ̂j = θ1 + (Ad + Π−Pd

j (1 − Πj)
Rd)Gd. Again using Πj = Nj/NJ and sj = d

(S)
j we

find

Cj(a
(S)
J , θ = θ̂j) = Φ

(√
NJ(0RdGd − Π−Pd

j (1 − Πj)
Rd

σ
√

1 − Πj

)

,

which is constant across analyses (i.e., independent of j) if Pd = 0, and Rd = 0.5. In that case, the

constant conditional power threshold will vary with the choice of Ad. There is no member of the

unified family of group sequential stopping boundaries that corresponds to a constant conditional

power computed using the lower bound θ̂j − z0.975σ/
√

Nj of a fixed sample 95% confidence interval

at the jth analysis.

In Table 1, we explore the relationships between stopping boundaries derived from the stochastic

curtailment and decision theoretic approaches in more detail for seven group sequential designs
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defined for the setting of the sepsis trial: a total of 1700 subjects used to compare 28 day mortality

in a level 0.025 one-sided test of a lesser alternative. All designs considered in Table 1 assume

four equally spaced analyses and have O’Brien-Fleming boundary shape functions for the efficacy

boundary. The futility boundaries considered include

1. SymmOBF.4: O’Brien-Fleming boundary shape function as parameterized in the unified

family (Ad = 0, Pd = 1, Rd = 0) with β = 0.025 to detect an alternative of θ1 = −0.0855.

2. Futility.8: A boundary shape function as parameterized in the unified family (Ad = 0, Pd =

0.8, Rd = 0) with β = 0.025 to detect an alternative of θ1 = −0.0866. (This was the stopping

rule ultimately chosen for the sepsis clinical trial.)

3. Futility.tri: Triangular test [3] boundary shape function as parameterized in the unified family

(Ad = 1, Pd = 1, Rd = 0) with β = 0.025 to detect an alternative of θ1 = −0.0889.

4. Cond.07.20: Stopping for futility if the conditional power to detect θ1 = −0.07 is less than

0.20.

5. Cond.Est.20: Stopping for futility if the conditional power to detect θ = θ̂j at the jth analysis

is less than 0.20. (This design can also be parameterized in the unified family as Ad = 3.866,

Pd = 0, Rd = 0.5 with β = 0.025 to detect an alternative of θ1 = −0.1091.)

6. Cond.Est.10: Stopping for futility if the conditional power to detect θ = θ̂j at the jth analysis

is less than 0.10. (This design can also be parameterized in the unified family as Ad = 2.267,

Pd = 0, Rd = 0.5 with β = 0.025 to detect an alternative of θ1 = −0.1028.)

7. Cond.LowCI.20: Stopping for futility if the conditional power to detect θ = θ̂j − 1.96σ/
√

Nj

at the jth analysis is less than 0.20.

For each of these seven designs, we present the frequentist inference (bias adjusted estimate,

along with confidence intervals and P values computed using the sample mean ordering [24]) cor-

responding to the futility stopping boundaries at the jth analysis for j = 1, 2, 3, along with the
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conditional power computations when assuming θ1 = −0.07, θ1 = −0.0855, θ1 = θ̂j (the current

MLE), and θ1 = θ̂j −1.96σ/
√

Nj (the lower bound of the current fixed sample confidence interval).

Table 1: Frequentist inference (bias adjusted estimate, confidence intervals and P values computed
using the sample mean ordering [24]) corresponding to the futility stopping boundaries at the jth
analysis for j = 1, 2, 3, along with the conditional power computations when assuming θ1 = −0.07,
θ1 = −0.0855, θ1 = θ̂j (the current MLE), and θ1 = θ̂j − 1.96σ/

√

Nj (the lower bound of the
current fixed sample confidence interval). Each design assumes four equally spaced analysis after

425, 850, 1275, and 1700 subjects have been accrued to the study.

Analysis Presumed True Treatment Effect (θ)
Design Time:j BAM Crude 95% CI P Value .0855 .0700 θ̂j θ̂low(0.95)

SymmOBF.4 1 0.077 ( 0.001, 0.139) 0.977 0.500 0.265 0.000 0.000
2 -0.006 (-0.060, 0.044) 0.401 0.500 0.304 0.002 0.191
3 -0.031 (-0.079, 0.010) 0.067 0.500 0.358 0.091 0.252

Futility.8 1 0.038 (-0.037, 0.101) 0.846 0.704 0.462 0.000 0.072
2 -0.017 (-0.071, 0.034) 0.263 0.634 0.432 0.015 0.417
3 -0.035 (-0.082, 0.008) 0.053 0.582 0.438 0.142 0.281

Futility.tri 1 0.019 (-0.055, 0.082) 0.697 0.793 0.575 0.000 0.333
2 -0.026 (-0.080, 0.025) 0.161 0.748 0.561 0.059 0.655
3 -0.039 (-0.087, 0.005) 0.040 0.681 0.543 0.231 0.326

Cond.07.20 1 0.092 ( 0.016, 0.153) 0.990 0.416 0 .200 0.000 0.000
2 0.003 (-0.051, 0.053) 0.541 0.371 0 .200 0.000 0.066
3 -0.025 (-0.072, 0.017) 0.113 0.316 0 .200 0.025 0.198

Cond.Est.20 1 -0.035 (-0.109, 0.016) 0.083 0.951 0.846 0 .200 0.995
2 -0.037 (-0.109, 0.009) 0.056 0.864 0.721 0 .200 0.868
3 -0.040 (-0.109, 0.005) 0.039 0.671 0.532 0 .200 0.372

Cond.Est.10 1 -0.029 (-0.102, 0.026) 0.140 0.932 0.806 0 .100 0.983
2 -0.032 (-0.102, 0.016) 0.090 0.800 0.628 0 .100 0.751
3 -0.037 (-0.102, 0.008) 0.054 0.534 0.391 0 .100 0.302

Cond.LowCI.20 1 0.024 (-0.049, 0.088) 0.756 0.748 0.515 0.000 0 .200
2 -0.011 (-0.064, 0.043) 0.376 0.504 0.307 0.003 0 .200
3 -0.028 (-0.074, 0.016) 0.111 0.315 0.199 0.024 0 .200

From Table 1, we immediately see that there is a wide range of conditional power values as

we vary the assumptions about the true treatment effect for the same futility stopping rule. Fur-

thermore, it is also evident that some of the ad hoc rules commonly proposed for futility rules

(e.g., Cond.07.20 which suggests early stopping for futility only if the conditional power computed

under the design alternative is less than 20%) are markedly more conservative than the O’Brien-

Fleming boundary, which is well-known for its extreme conservatism. On the other hand, other

such ad hoc rules (e.g., Cond.Est.20 which suggests early stopping for futility if the conditional

power computed under the current MLE is less than 20%) is so liberal as to cause substantial loss

of precision, as evidenced by the width of the 95% confidence interval: At the third futility analysis,

the point estimates at the Futility.8 stopping boundary and the Cond.Est.20 stopping boundary
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are comparable, but the 95% confidence interval is 24% wider for the Cond.Est.20 stopping rule.

In Table 1, surprisingly high conditional powers are sometimes associated with conservative

stopping boundaries. Part of this seeming paradox can be explained by considering whether the

assumptions used to compute the various conditional powers are relevant to the current state of

knowledge. Table 2 presents such conditional probability values for both the futility and efficacy

boundaries of the Futility.8 stopping rule actually used in the sepsis trial. For each analysis time,

we consider the conditional probability that an observation corresponding exactly to the threshold

for early stopping might eventually lead to a test statistic at the final analysis which would allow

rejection of the null hypothesis. That is, according to the stopping boundaries presented in Table

2, the null hypothesis is to be rejected if the crude estimate for the difference in 28 day mortality

rates (treatment minus comparison) is -0.042 or less at the final analysis (when 1700 subjects’

data is available). That stopping rule also suggests that after observing data on the first 425

subjects, a crude estimate for the difference in mortality rates of 0.047 or greater would lead to

early termination of the study for futility. From Table 2, we see that if the alternative hypothesis

of a difference of 28 day mortality rates of -0.07 is true, then upon observing a difference of 0.047

on the first 425 subjects, there is still a 46.2% chance that the next 1275 subjects’ data would

be such that the crude estimate of treatment difference would be less than -0.042 at the final

analysis. On the other hand, if the null hypothesis of a true difference in mortality of 0.00 were

true, there is only a 0.2% chance that the data yet to be accrued, when combined with the observed

crude estimate of 0.047 at the first analysis, would result in a crude estimate of the difference in

mortality rates less than -0.042 at the final analysis. Of course, if a clinical trial obtains results

corresponding to the futility boundary at the first analysis, it might not be reasonable to assume

either the null or alternative hypothesis. Thus some clinical trialists would consider computing the

conditional probability of obtaining significant results at the final analysis under the assumption

that the true difference in 28 day mortality rates corresponds to the crude estimate obtained at the

current analysis, i.e., for an observed value corresponding exactly to the futility boundary at the

first analysis, calculate the conditional probability of achieving a statistically significant result at

the final analysis under the assumption that the true difference in mortality is 0.047. From Table
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Table 2: Stopping probabilities and stochastic curtailment measures of the conditional probability
of rejecting the null hypothesis at the final analysis for the Futility.8 stopping rule. Using this
stopping rule, after 1700 subjects have been accrued to the study, a trial result corresponding to
an absolute difference in 28 day mortality rates less than -0.0424 would be judged statistically
significant at the 0.025 level. Conditional probabilities are computed assuming a true value of
θ corresponding to the current crude estimate of treatment effect, the null H0 : θ ≥ 0, and the

alternative H1 : θ = −0.07.

Probability of Exceeding Conditional Power
Stopping At First Time Pr(θ̂J ≥ −0.0424|θ̂j , θ)

Analysis Crude MLE of Alternative Null Current Alternative Null Current
Time Treatment Effect θ = −.07 θ = 0 MLE θ = −.07 θ = 0 Estimate

Efficacy (lower) boundary
1:N=425 -0.170 0.010 0.000 0.500 0.998 0.500 1.000
2:N=850 -0.085 0.302 0.002 0.477 0.990 0.500 0.998
3:N=1275 -0.057 0.400 0.009 0.331 0.950 0.500 0.907
4:N=1700 -0.042 0.178 0.013 0.200 – – –

Futility (upper) boundary
1:N=425 0.047 0.003 0.134 0.500 0.462 0.002 0.000
2:N=850 -0.010 0.021 0.496 0.413 0.432 0.006 0.015
3:N=1275 -0.031 0.040 0.271 0.271 0.438 0.036 0.142
4:N=1700 -0.042 0.047 0.074 0.175 – – –

2, we see that under this assumption that the true difference is equal to the current crude estimate,

the conditional power of the study is less that 0.05%. Similar interpretations can be applied to trial

results which correspond to the futility boundary at the second analysis. Thus, if we observe a crude

estimate of mortality rate difference of -0.01 after accruing data on 850 subjects, the conditional

probability of a statistically significant result at the final analysis is 43.2% if the true treatment

effect is the alternative of -0.07, 0.6% if the true treatment effect is the null hypothesis of 0.00, and

1.5% if the true treatment effect corresponds to the current crude estimate of -0.01.

None of these conditional power calculations are entirely satisfactory in and of themselves,

because each is assuming a single value for the unknown treatment effect, and that assumption

may or may not be appropriate. This problem is highlighted when we consider the conditional

power calculations for the futility boundary under the assumption of the alternative. For instance, it

seems somewhat surprising to see that when calculating the conditional power under the alternative

hypothesis of a true difference in mortality rates of -0.07, the Futility.8 stopping boundary for

futility corresponds to surprisingly high values of conditional power– much higher than the 10%

or 20% values commonly quoted by clinical trialists using conditional power criteria to define such
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stopping boundaries. A conditional power of, say, 46.2% must be reconciled with the fact that

the Futility.8 boundary was chosen in the actual clinical trial, because it did not result in a very

marked loss of statistical power for the alternative hypotheses of greatest interest, nor did adoption

of that stopping rule greatly affect the alternatives for which the clinical trial has prescribed levels

of power [15]. This seeming paradox is resolved when we consider whether assuming the alternative

hypothesis when such results have been obtained is reasonable.

To address this issue, we also present in Table 2 the probability of stopping the clinical trial at

each of the analyses under the corresponding presumed true treatment effects. It should be noted

that while the stopping probabilities under the null hypothesis of θ = 0 and the design alternative

of θ = −0.07 sum to 1.0, those given under the assumption that the current MLE is correct do

not. This is because in the column corresponding to the current MLE, a different treatment effect

is presumed for each row of the table. Immediately apparent from these stopping probabilities is

the fact that it is often the case that presuming the null or alternative hypothesis is true is often

quite unreasonable for some stopping boundaries. For instance, if θ = −0.07, the probability of

stopping at the first analysis with a decision for futility is 0.003. From Table 1, we see that at that

boundary, the 95% confidence interval for θ is from -0.037 to 0.101. These results would argue that

a conditional power computation based on a presumed treatment effect of θ = −0.07 (which has

been ruled out with high confidence) was largely irrelevant. The 46.2% conditional probability or

a reversed decision under this presumption is a negligible number of actual trials. This point is

examined further using simulations.

For each of the hypotheses used to compute the conditional power at the stopping boundaries,

Table 3 presents the results of one million clinical trials simulated under either the null (θ = 0.00)

or design alternative (θ = −0.07) hypotheses. Included in this table is the estimated probability

that the trial might exceed either the futility or efficacy boundaries at each analysis. From this

table we see that the probability that the trial might stop at the first analysis with a crude estimate

of the difference in mortality rates of 0.047 or more is 0.31% when the true difference is -0.07 and

13.51% when the true difference is 0.00. Similarly, the probability that the trial might continue

past the first analysis and then stop at the second analysis with a crude estimate greater (more
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positive) than -0.01 is 2.24% and 50.34% when the true difference is -0.07 and 0.00, respectively.

Again, the extremely low probability of stopping for futility at the first analysis when the true

treatment effect is -0.07 would, in a frequentist sense, argue against the relevance of a conditional

power calculation computed under that hypothesis.

It is thus clear that stopping a trial for futility might be quite reasonable despite there being a

high conditional power of reversing the decision at the planned final analysis of a continued trial.

This is illustrated further in Table 3, which also explicitly considers the probability of conflicting

decisions being made at interim analyses and a planned final analysis. Rather than focusing on trial

results occurring exactly on the stopping boundaries, we present for each stopping boundary, both

the conditional and the unconditional probabilities that the decision made at an interim analysis

would not agree with the decision made in a fixed sample design. It should be noted, however,

that when comparing a group sequential design to a fixed sample test in this way, we must consider

the differences in power and sample size. That is, compared to a fixed sample test with the same

maximal sample size, a group sequential test has less power. On the other hand, when compared

to a fixed sample test having the same power, the group sequential test uses fewer subjects on

average. In an attempt to isolate the value of conditional power as a futility measure, we compute

the probability of reversed decisions relative to a fixed sample design which either has the same

maximal sample size (1700 subjects), has the same sample size as the worst case expected sample

size (the worst case ASN for Futility.8 is 1336 subjects when the true treatment effect is -0.047),

or has the same power to detect the alternative of a true treatment effect of -0.07 (1598 subjects).

We note that when comparing efficiency of statistics, the usual comparison is that between two

statistics providing the same type I error and the same power to detect some alternative. Hence,

the comparison based on matched power is perhaps the most theoretically relevant of these fixed

sample tests.

One million clinical trials are simulated under the null hypothesis of a true difference in mortality

rates of 0.00 and the alternative hypothesis of a true difference of -0.07. Under each hypothesis, we

count the number of studies which stop at each analysis for futility and efficacy. We then compute

the percentage of those stopped studies which would have had a reverse statistical decision made
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Table 3: Probabilities that trial decisions at an interim analysis might disagree with that obtained
in a fixed sample analysis. One million clinical trials with a total of 1700 patients were simulated
under the null and alternative hypotheses. Test statistics were computed at four equally spaced
analyses, and the Futility.8 stopping rule was used to make decisions regarding early stopping.
Analyses of each simulated data set were also performed at sample sizes corresponding to the level
0.025 fixed sample tests having the same sample size as the worst case ASN of the Futility.8
stopping rule (N= 1336), having the same power (N= 1598), and having the same maximal sample
size as the stopping rule (N=1700). For each interim analysis, the empirical probability of stopping
for efficacy or futility was computed, along with the unconditional probability that the stopping
rule would dictate early stopping with one decision and the fixed sample test would result in the
opposite decision. Also presented is the conditional probability of reverse decisions defined as the
proportion of trials stopped at a given analysis which would have a reverse decision in the fixed

sample test.
Same Worst Same Power Under the Same Maximal

Case ASN (N=1336) Alternative (N=1598) Sample Size (N=1700)

Analysis Crude Est Stopping
Time of Trt Effect Probability Cond Uncond Cond Uncond Cond Uncond

Null Hypothesis : θ = 0
Efficacy (lower) boundary
1: N= 425 -0.170 0.0000 0.3103 0.0000 0.4483 0.0000 0.4483 0.0000
2: N= 850 -0.085 0.0024 0.2242 0.0005 0.3477 0.0008 0.3751 0.0009
3: N=1275 -0.057 0.0091 0.0228 0.0002 0.2446 0.0022 0.3066 0.0028
4: N=1700 -0.042 0.0132 0.5538 0.0073 0.2431 0.0032 0.0000 0.0000
Total 0.0247 0.3258 0.0080 0.2539 0.0063 0.1498 0.0037

Futility (upper) boundary
1: N= 425 0.047 0.1351 0.0003 0.0000 0.0007 0.0001 0.0009 0.0001
2: N= 850 -0.010 0.5034 0.0004 0.0002 0.0014 0.0007 0.0017 0.0009
3: N=1275 -0.031 0.2619 0.0000 0.0000 0.0040 0.0010 0.0063 0.0017
4: N=1700 -0.042 0.0749 0.1040 0.0078 0.0596 0.0045 0.0159 0.0012
Total 0.9753 0.0082 0.0080 0.0065 0.0063 0.0039 0.0038

Alternative Hypothesis : θ = −.07
Efficacy (lower) boundary
1: N= 425 -0.170 0.0091 0.0012 0.0000 0.0015 0.0000 0.0014 0.0000
2: N= 850 -0.085 0.2984 0.0035 0.0011 0.0033 0.0010 0.0029 0.0009
3: N=1275 -0.057 0.4010 0.0020 0.0008 0.0091 0.0037 0.0088 0.0035
4: N=1700 -0.042 0.1791 0.3909 0.0700 0.0940 0.0168 0.0000 0.0000
Total 0.8877 0.0810 0.0719 0.0242 0.0215 0.0050 0.0044

Futility (upper) boundary
1: N= 425 0.047 0.0031 0.1927 0.0006 0.3484 0.0011 0.4038 0.0012
2: N= 850 -0.010 0.0224 0.0794 0.0018 0.2534 0.0057 0.3283 0.0073
3: N=1275 -0.031 0.0391 0.0003 0.0000 0.1722 0.0067 0.2764 0.0108
4: N=1700 -0.042 0.0478 0.1974 0.0094 0.1819 0.0087 0.0719 0.0034
Total 0.1123 0.1052 0.0118 0.1974 0.0222 0.2032 0.0228

in a fixed sample study conducted after accruing either 1336 (for the study with the same worst

case ASN), 1598 (for the same power study), or 1700 (for the same maximal sample size study).

These conditional probabilities should correspond only approximately to the conditional power

calculations given in Table 2, because in Table 3 we consider studies which exceed the stopping

boundaries in addition to those which stop with results exactly on the boundary. We also present

the unconditional probabilities of reversed decisions, which are equal to the conditional probability

times the stopping probability.

From Table 3 we see that under the alternative hypothesis of a true treatment effect of -0.07, the

probability of stopping for futility at the first analysis is approximately 0.003. Of those trials that
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would stop early for futility in this manner, approximately 40.4% would correspond instead to a

decision for efficacy in a fixed sample analysis conducted with data from 1700 subjects. This number

differs somewhat from the conditional power of 46.2% reported in Table 2 in part because the latter

number conditions on results observed exactly on the boundary at the first analysis while the value

in Table 3 includes trial results that exceeded the futility boundary by some amount and thus

would tend to have a lower probability of being reversed. The actual impact of this relatively high

conditional probability is quite slight however: As shown in the column for unconditional power of

a reversed decision for this fixed sample test, a 40.4% reversal rate for studies stopped for futility at

the first analysis corresponds to 0.12% of all studies. Table 3 also shows that approximately 19.3%

of studies stopped for futility at the first interim analysis would be expected to correspond to a

decision for efficacy if a fixed sample study continued to accrue 1336 subjects, although such reversal

of the decision represents only 0.06% of all possible outcomes under the alternative. Similarly, while

34.8% of those trials stopping for futility at the first analysis do not agree with the result which

would have been reported in a fixed sample study with 1598 subjects, the actual proportion of

studies with such a reversal is quite small at 0.11%. Clearly, there would be minimal impact on the

unconditional power when using futility rules which correspond to these seemingly high thresholds

for conditional power.

This then highlights one problem with the use of conditional power arguments: A high con-

ditional power may correspond to a neglible proportion of trials overall, and a lower conditional

power may correspond to a higher proportion of trials overall. For instance, though the conditional

probability of reversing a decision for efficacy at the first analysis is approximately 44.8% under

the null hypothesis when considering a 1700 subject fixed sample study, this pertains to less than

0.005% of the one million simulated trials. On the other hand, the conditional probability under

the alternative hypothesis of reversing a decision for futility at the third analysis is lower at 27.6%

but pertains to 1.1% of the one million simulated trials.

A further foundational problem with the use of conditional power is apparent when a group

sequential design is compared to a fixed sample design having the same power to detect the alterna-

tive hypothesis. When the group sequential design Futility.8 is compared to a fixed sample design
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having 1598 subjects, both the type I error (0.025) and the power (0.975) agree between the two

studies. This can be seen from Table 3 by noting that the total proportion of trials corresponding

to a futility decision in the group sequential test and an efficacy decision in the fixed sample test

is 0.0063 under the null hypothesis and 0.0222 under the alternative hypothesis–identical (except

for random sampling in the simulations) to the proportion of trials corresponding to an efficacy

decision in the group sequential test and a futility decision in the fixed sample test under the re-

spective hypotheses (0.0063 under the null and 0.0215 under the alternative). When holding the

treatment effect constant, there is of course no reason to prefer making a mistake with one sample

over another. In the case of the null hypothesis, ever deciding for efficacy is an error, and trading

an earlier erroneous decision for a later erroneous decision (or vice versa) is of no consequence

on the error rates when only the behavior of the test under the null is considered. Instead, the

usual frequentist paradigm is to consider which error made under the null hypothesis will lead to

a more powerful and/or efficient test. Because conditional power arguments are based solely on

considering tradeoffs between decisions made under the same hypothesis, they cannot accurately

predict the impact of a stopping rule on statistical power or efficiency. (These latter concerns are

adequately addressed by evaluating the impact of a stopping rule on the power curve and the ASN

curve relative to various fixed sample designs, as illustrated in Table 5 below.)

As noted above, a portion of the seeming paradox between conditional power calculations and

the more relevant unconditional power and efficiency considerations is due to the use of (at times)

unreasonable assumptions in the calculation of conditional power. The use of the current MLE

and/or the lower bound of confidence intervals to calculate conditional power as shown in Table 1

was an effort to address this problem. Another approach to avoid basing calculations on untenable

assumptions uses a Bayesian paradigm.

The use of Bayesian prior distributions to obtain predictive probabilities addresses some, but not

all, of the problems identified with conditional power. In this approach, the observed data is used

to update some prior distribution for the treatment effect, and then the predictive distribution

of the result at the final analysis is obtained by integrating over the posterior distribution of

the treatment effect parameter. These predictive probabilities have a distinct advantage over the
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conditional probabilities in that the predictive probabilities take into account both prior notions of

the likely values for the true treatment probability and the evidence in the data for the true value.

The Bayesian predictive probability is the probability that the test statistic would exceed some

specified threshold at the final analysis, using a prior distribution and the observed data to compute

a posterior distribution for the treatment effect parameter at the j-th analysis. We consider a

robust approach to Bayesian inference based on a coarsening of the data by using the asymptotic

distribution of a nonparametric estimate of treatment effect [25] as described more fully in our

companion paper on Bayesian evaluation of group sequential designs [16]. That is, rather than the

exact binomial distributions for the two arms of the sepsis trial, we use the approximate normal

distribution for the estimated difference in 28 day mortality rates. In the case of a compuatationally

convenient conjugate normal prior θ ∼ N(ζ, τ2), at the jth analysis we can define an approximate

Bayesian posterior distribution for the true treatment effect θ conditioned on the observation θ̂j as

θ|θ̂j∼̇N
(

θ̂jτ
2 + ζσ2/Nj

τ2 + σ2/Nj
,

τ2σ2/Nj

τ2 + σ2/Nj

)

.

Then, using the sampling distribution for the as yet unobserved data and integrating over the

posterior distribution, the predictive distribution for the estimate θ̂J at the final analysis is

θ̂J |θ̂j∼̇N
(

(τ2 + σ2/NJ)Πj θ̂j + (1 − Πj)ζσ2/NJ

Πjτ2 + σ2/NJ
,
(1 − ΠJ)(τ2 + σ2/NJ )σ2/NJ

Π2
j(ΠJτ2 + σ2/NJ)

)

.

We might therefore compute a predictive probability statistic analogous to the conditional power

statistic as

Hj(a
(θ̂)
J , ζ, τ2) =

∫

Pr(θ̂J < a
(θ̂)
J |Sj = sj , θ) p(θ |Sj = sj) dθ

= Φ





[Πjτ
2 + σ2/NJ ][a

(θ̂)
J − θ̂j] + [1 − Πj ][θ̂j − ζ]σ2/NJ

√

[1 − Πj ][τ2 + σ2/NJ ][Πjτ2 + σ2/Nj ]σ2/NJ



 .

The case of a noninformative (although improper) prior is of special interest. When we consider
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taking the limit as τ2 → ∞, the predictive probability statistic becomes

Hj(a
(θ̂)
J , ζ, τ2 = ∞) = Φ





(a
(θ̂)
J − θ̂j)

√

Πj
√

[1 − Πj ]σ2/NJ



 .

As with the conditional power statistic, we can examine the relations between stopping rules

defined based on thresholds for predictive power and stopping boundaries defined using the decision

theoretic approach of the unified family. On the MLE scale, the futility boundary within the unified

family will be of the form d
(θ̂)
j = θ1+(Ad+Π−Pd

j (1−Πj)
Rd)Gd, with an efficacy boundary of the form

a
(θ̂)
j = θ0 − (Aa + Π−Pa

j (1 − Πj)
Ra)Ga. The constraint that a

(θ̂)
J = d

(θ̂)
J dictates that the threshold

for statistical significance at the final analysis is a
(θ̂)
J = θ0 − (Aa + 0Ra)Ga = θ1 + (Ad + 0Rd)Gd.

Inserting these formulas into the formula for the conditional power with Πj = Nj/NJ and θ̂j = d
(θ̂)
j

yields

Hj(a
(θ̂)
J , ζ, τ2) =

Φ

(

[Πjτ2+σ2/NJ ][0Rd−Π
−Pd
j (1−Πj)

Rd ]Gd+[1−Πj ][θ1+(Ad+Π
−Pd
j (1−Πj)

Rd)Gd−ζ]σ2/NJ√
[1−Πj ][τ2+σ2/NJ ][Πjτ2+σ2/Nj ]σ2/NJ

)

,

which is in general dependent upon j, suggesting that no useful member of the unified family of

stopping rules corresponds to a constant threshold on the Bayesian predictive probability scale for

an arbitrary prior. However, for a noninformative prior, the statistic on a unified family futility

stopping boundary becomes

Hj(a
(θ̂)
J , ζ, τ2) = Φ

(

[Π0.5
j 0Rd − Π−Pd+0.5

j (1 − Πj)
Rd−0.5]Gd

√

σ2/NJ

)

,

which is constant across analyses (i.e., independent of j) if Pd = 0.5, and Rd = 0.5. In that case,

the constant conditional power threshold will vary with the choice of Ad. Such a boundary also

corresponds to Xiong’s [26] sequential conditional probability ratio test.

In Table 4, we explore the relationships between stopping boundaries derived from the predictive

probability and decision theoretic approaches in more detail for the SymmOBF.4, Futility.8, and
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Futility.tri stopping rules defined above, as well as for five stopping rules defined by Bayesian

predictive probabilities. Again, all group sequential designs are defined for the setting of the sepsis

trial: a total of 1700 subjects used to compare 28 day mortality in a level 0.025 one-sided test of a

lesser alternative. All designs considered in Table 4 assume four equally spaced analyses and have

O’Brien-Fleming boundary shape functions for the efficacy boundary. The futility boundaries all

correspond to early stopping if the predictive probability of a significant result at the final analysis

is less than 10%, though they differ according to the location (ζ) and spread (τ2) of the prior

distribution for θ. The rules considered include some of those considered during the planning of

the sepsis clinical trial: [16]

1. Pred.Dogm.Opt: A highly dogmatic (prior SD τ = 0.015), optimistic prior (prior mean ζ =

−0.09).

2. Pred.Dogm.Pess: A highly dogmatic (prior SD τ = 0.015), pessimistic prior (prior mean

ζ = 0.02).

3. Pred.Vague.Opt: A vague (prior SD τ = 0.15), optimistic prior (prior mean ζ = −0.09).

4. Pred.Vague.Pess: A vague (prior SD τ = 0.15), pessimistic prior (prior mean ζ = 0.02).

5. Pred.Consensus: The sponsor’s consensus prior (prior SD τ = 0.04, prior mean ζ = −0.04).

6. Pred.Noninform: A noninformative prior (prior SD τ = ∞). (This design can also be param-

eterized in the unified family as Ad = 1.77, Pd = 0.5, Rd = 0.5 with β = 0.025 to detect an

alternative of θ1 = −0.0906.)

For each of these designs, we present in Table 4 the frequentist inference (bias adjusted esti-

mate, along with confidence intervals and P values computed using the sample mean ordering [24])

corresponding to the futility stopping boundaries at the jth analysis for j = 1, 2, 3, along with

the Bayesian predictive power when assuming prior distributions corresponding to the dogmatic

optimistic (ζ = −0.09, τ = 0.015), vague optimistic (ζ = −0.09, τ = 0.15), sponsor’s consensus

(ζ = −0.04, τ = 0.04), dogmatic pessimistic (ζ = 0.02, τ = 0.015), vague pessimistic (ζ = 0.02,

τ = 0.15), and noninformative (τ = ∞) priors.
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Table 4: Stochastic curtailment measures of the predictive probability of rejecting the null hypothesis at the final analysis.

Predictive probabilities are computed under each of the prior distributions defined above.

Analysis Prior Distribution On θ
Dogm/ Vague/ Dogm/ Vague/

Design Time:j BAM Crude 95% CI P Value Opt Opt Cons Pess Pess Noninf

SymmOBF.4 1 0.077 ( 0.001, 0.139) 0.977 0.301 0.000 0.003 0.000 0.000 0.000
2 -0.006 (-0.060, 0.044) 0.401 0.343 0.026 0.033 0.001 0.021 0.023
3 -0.031 (-0.079, 0.010) 0.067 0.393 0.130 0.129 0.019 0.118 0.124

Futility.8 1 0.038 (-0.037, 0.101) 0.846 0.536 0.011 0.028 0.000 0.007 0.008
2 -0.017 (-0.071, 0.034) 0.263 0.487 0.070 0.079 0.003 0.057 0.063
3 -0.035 (-0.082, 0.008) 0.053 0.476 0.184 0.182 0.031 0.169 0.177

Futility.tri 1 0.019 (-0.055, 0.082) 0.697 0.658 0.037 0.066 0.001 0.025 0.028
2 -0.026 (-0.080, 0.025) 0.161 0.624 0.147 0.155 0.009 0.125 0.135
3 -0.039 (-0.087, 0.005) 0.040 0.584 0.271 0.266 0.056 0.252 0.262

Pred.Dogm.Opt 1 0.125 ( 0.049, 0.186) 0.999 0.100 0.000 0.000 0.000 0.000 0.000
2 0.018 (-0.037, 0.068) 0.737 0.100 0.001 0.002 0.000 0.001 0.001
3 -0.018 (-0.065, 0.023) 0.185 0.100 0.013 0.014 0.001 0.011 0.012

Pred.Vague.Opt 1 -0.003 (-0.075, 0.061) 0.474 0.755 0.100 0.133 0.003 0.073 0.081
2 -0.024 (-0.082, 0.028) 0.188 0.549 0.100 0.109 0.005 0.083 0.090
3 -0.034 (-0.085, 0.011) 0.072 0.343 0.100 0.101 0.014 0.090 0.095

Pred.Consensus 1 0.005 (-0.067, 0.070) 0.569 0.713 0.068 0.100 0.002 0.048 0.054
2 -0.023 (-0.078, 0.029) 0.206 0.531 0.091 0.100 0.005 0.076 0.082
3 -0.033 (-0.082, 0.011) 0.074 0.341 0.100 0.100 0.014 0.090 0.095

Pred.Dogm.Pess 1 -0.062 (-0.141, -0.007) 0.013 0.985 0.765 0.727 0.100 0.709 0.742
2 -0.041 (-0.117, 0.045) 0.154 0.918 0.522 0.528 0.100 0.482 0.501
3 -0.035 (-0.111, 0.053) 0.207 0.698 0.335 0.344 0.100 0.313 0.323

Pred.Vague.Pess 1 -0.010 (-0.081, 0.054) 0.394 0.788 0.134 0.165 0.004 0.100 0.111
2 -0.026 (-0.086, 0.025) 0.162 0.582 0.119 0.128 0.007 0.100 0.108
3 -0.035 (-0.088, 0.010) 0.067 0.364 0.111 0.111 0.016 0.100 0.105

Pred.Noninform 1 -0.008 (-0.079, 0.057) 0.422 0.776 0.121 0.153 0.004 0.090 0.100
2 -0.026 (-0.085, 0.026) 0.173 0.567 0.110 0.119 0.006 0.092 0.100
3 -0.035 (-0.087, 0.011) 0.069 0.354 0.105 0.106 0.015 0.095 0.100

From Table 4, we immediately see that, as with conditional power, for any given futility stop-

ping rule there is a wide range of predictive power values as we vary the assumptions about the true

treatment effect (i.e., vary the prior distribution for θ). It is evident that seemingly conservative

futility thresholds for predictive power can be either markedly more conservative or less conserva-

tive than the O’Brien-Fleming boundary, and thus result in sampling plans with greatly varying

efficiency. A priori, we find it difficult to guess the loss of frequentist power that might result from

implementing particular futility rules based on predictive power.

We further note that when used for stochastic curtailment, the Bayesian predictive probability

has many of the same foundational issues as the conditional power measures. From a Bayesian

perspective, it would make the most sense to base scientific decisions on the posterior probability
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of hypotheses and a credible interval for the parameter θ measuring treatment effect. There does

not seem to be a good Bayesian rationale for basing decisions about early stopping on predictions

of whether a future analysis would meet any particular standard, much less a frequentist stan-

dard. While frequentists might be interested in using the Bayesian predictive probability to predict

whether statistical significance (or some other decision criterion) would be attained at some future

analysis (such an approach does account for the variability in the data at an interim analysis),

in this use of predictive probabilities, the foundational issues described for the conditional power

are still present: The predictive probabilities do not take into account the tradeoffs between the

relative likelihood of particular outcomes under the null and alternative hypotheses.

In order to use stochastic curtailment measures such as conditional power or predictive power

as a stopping criterion, it is clear that we must account for the diversity of estimates arising from

making different assumptions about the prior distribution of the treatment effect. Should we use

the frequentist approach placing all emphasis on a single hypothesis (and if so, which hypothesis),

or should we use the Bayesian approach based on a prior distribution for the true treatment effect

parameter (and if so, which prior)? Our feeling is that if some single such measure must be

used, the Bayesian predictive probability based on a noninformative prior provides a reasonable

standard approach. We do note that when using the coarsened Bayes approach, the sensitivity of

the predictive probability to the choice of prior can be displayed in contour plots as described in

our paper on the Bayesian evaluation of group sequential stopping plans. But even with such a

sensitivity analysis, it is not at all clear when a predictive power is sufficiently low to warrant early

termination of a study for reasons of futility.

We have found that the best criterion for establishing whether any particular threshold for

either conditional power or predictive power is reasonable is based on tradeoffs between efficiency

(ASN) and power. Table 5 presents this information for each of the stopping rules considered above.

Each of the stopping rules were based on a maximal sample size of 1700 subjects, and hence any

introduction of a stopping rule will tend to decrease the power to detect a given alternative relative

to the fixed sample test. It was this sort of information that was used by the sponsor and DSMB in

the actual sepsis trial as they chose the Futility.8 stopping rule: Although that stopping rule led to
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a slight decrease in power relative to the symmetric O’Brien-Fleming rule (loss of power of 0.007,

0.006, and 0.002 when θ = −0.05, −0.07, and −0.0855, respectively), such a small loss of power was

judged acceptable given the approximate 10% gain in average efficiency when the null hypothesis

is true. It is worth noting that all of the stopping rules based on stochastic curtailment statistics

(conditional power or predictive power) used futility stopping thresholds of 10-20%, though they

had markedly different unconditional power and efficiency operating characteristics.

Table 5: Posterior probabilities of hypotheses for trial results corresponding to stopping boundaries of Futility.8 stopping rule

with four equally spaced analyses after 425, 850, 1275, and 1700 subjects have been accrued to the study. Posterior probabilities
are computed based on optimistic, the sponsor’s consensus, and pessimistic centering of the priors using three levels of assumed
information in the prior. The variability of the likelihood of the data corresponds to the alternative hypothesis: event rates of

0.30 in the control group and 0.23 in the treatment group.

θ=0 θ=-0.05 θ=-0.07 θ=-0.0855

Design Power ASN Power ASN Power ASN Power ASN

SymmOBF.4 0.025 1099 0.631 1376 0.895 1242 0.975 1099
Futility.8 0.025 987 0.624 1331 0.889 1222 0.972 1088
Futility.tri 0.025 883 0.610 1266 0.876 1187 0.965 1069
Cond.07.20 0.025 1182 0.636 1419 0.899 1260 0.977 1107
Cond.Est.20 0.025 623 0.543 1023 0.797 1024 0.907 964
Cond.Est.10 0.025 677 0.571 1110 0.828 1086 0.928 1006
Cond.LowCI.20 0.025 1033 0.633 1386 0.896 1248 0.975 1102
Pred.Dogm.Opt 0.025 1290 0.638 1450 0.900 1269 0.978 1111
Pred.Vague.Opt 0.025 843 0.616 1281 0.879 1196 0.965 1075
Pred.Consensus 0.025 883 0.621 1306 0.884 1210 0.969 1083
Pred.Dogm.Pess 0.025 489 0.386 687 0.602 726 0.742 727
Pred.Vague.Pess 0.025 803 0.609 1248 0.871 1177 0.960 1064
Pred.Noninform 0.025 818 0.612 1261 0.874 1185 0.962 1068

4 Summary

When clinical trialists are first confronted with the use of a stopping rule, it is quite typical that

they worry about the possibility that decisions made at the interim analysis might be different

from those which would have been reached if the trial had continued to accrue the full sample size.

Indeed, some researchers have suggested that such considerations are at times the ones which should

drive the selection of a stopping rule [12, 13]. While we find the operating characteristics discussed

in our companion papers [15, 16] much more relevant, the persistence of questions about the futility

of continuing a study often dictates that these properties be evaluated. In demonstrating the ways

that measures of futility can be evaluated, we highlighted the reasons that we believe they can be

less useful (at best) or misleading (at worst). Specifically, we find that 1) the dependence of the
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stochastic curtailment calculations on a presumed treatment effect leads to a confusing array of

statistics on which a stopping decision might be based, 2) the nonlinear relationship between the

conditional or predictive power calculations, the probability of stopping at a given analysis, and the

unconditional power functions means that naive users often choose conditional or predictive power

thresholds that are suboptimal with respect to their treatment of scientific, ethical, and efficiency

issues, 3) conditional or predictive power alone, from a statistical foundations viewpoint, does not

address either frequentist or Bayesian optimality criteria, and 4) consideration of tradeoffs between

unconditional power and efficiency is sufficient to ensure adequate treatment of futility concerns.

In particular, we do not find any particular advantage in the adaptive redesign of a clinical trial

based on stochastic curtailment issues. Careful evaluation of stopping rules and information based

implementation procedures can handle most of the situations where uncertainty exists about the

imprecision of estimates of treatment effects.
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