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Bayesian Evaluation of Group Sequential

Clinical Trial Designs

Abstract

Clincal trial designs often incorporate a sequential stopping rule to serve as a
guide in the early termination of a study. When choosing a particular stopping
rule, it is most common to examine frequentist operating characteristics such as
type I error, statistical power, and precision of confi- dence intervals (Emerson,
et al. [1]). Increasingly, however, clinical trials are designed and analyzed in the
Bayesian paradigm. In this paper we describe how the Bayesian operating char-
acteristics of a particular stopping rule might be evaluated and communicated
to the scientific community. In particular, we consider a choice of probability
models and a family of prior distributions that allows concise presentation of
Bayesian properties for a specified sampling plan.
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1 Introduction

Clinical trial data are often monitored repeatedly during the conduct of a study in order to ad-

dress the efficiency and ethical issues inherent in human experimentation. Decisions regarding the

continuation of the study are typically guided by a group sequential stopping rule which specifies

the conditions under which the clinical trial results might be judged sufficiently convincing to allow

early stopping. In a companion paper to this manuscript [1], we consider the evaluation of a clini-

cal trial design with respect to frequentist operating characteristics such as type I error, statistical

power, sample size requirements, estimates of treatment effect which correspond to early termina-

tion, and precision of confidence intervals. Increasingly, however, there has been much interest in

the design and analysis of clinical trials under a Bayesian paradigm. We thus turn our attention to

the evaluation of Bayesian operating characteristics for a clinical trial design.

In considering the Bayesian approach, we again take the stance that the derivation of the

stopping rule is relatively unimportant. That is, in the companion paper, we demonstrate the 1:1

correspondence between stopping rules defined for frequentist statistics (on a variety of scales) and

Bayesian statistics for a specified prior. Hence, our focus in this paper will be on the computation

and presentation of Bayesian operating characteristics for a specified stopping rule. The primary

issues to be addressed will be the selection of suitable probability models and families of prior

distributions which will allow a standard, concise communication of design precision and statistical

inference. In particular, our interest is in providing Bayesian inference in the context of a probability

model similar to that which would be assumed in the most common frequentist analyses. For the

purposes of brevity, we will consider only a single stopping rule in our illustration, although in

practice we would compare the Bayesian operating characteristics among several candidate stopping

rules in much the same way that frequentist operating characteristics were compared across stopping

rules in the companion paper.

In illustrating our approach to evaluating Bayesian operating characteristics, we will appeal to

the same example as used in the companion paper. In section 2, we provide a brief review of the

scientific setting and basic statistical design of the clinical trial. Then in section 3 we present the
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general Bayesian paradigm and the nonparametric, “coarsened Bayesian” approach we adopt here,

along with a discussion of the the choice of prior distributions. In section 4 present a general scheme

for presenting the Bayesian operating characteristics in a relatively concise manner. We conclude

in section 5 with some general comments regarding the practical use of the proposed approach to

Bayesian evaluation of clinical trial designs.

2 Example Used for Illustration

We illustrate our approach in the context of a randomized, double-blind, placebo-controlled clinical

trial of an antibody to endotoxin in the treatment of gram-negative sepsis. Details of the scientific

setting and the clinical trial design are provided in the companion paper [1].

2.1 Notation and Sample Size

Briefly, a maximum of 1,700 patients with proven gram-negative sepsis were to be randomly assigned

in a 1:1 ratio to receive a single dose of antibody to endotoxin or placebo. The primary endpoint

for the trial was to be the 28 day mortality rate, which was anticipated to be 30% in the placebo

treated patients and was hoped to be 23% in the patients receiving antibody. Notationally, we let

Xki be an indicator that the i-th patient on the k-th treatment arm (k=0 for placebo, k= 1 for

antibody) died in the first 28 days following randomization. Thus Xki = 1 if the i-th patient on

treatment arm k dies in the first 28 days following randomization, and Xki = 0 otherwise. We are

interested in the probability model in which the random variables Xki are independently distributed

according to a Bernoulli distribution B(1, pk), where pk is the unknown 28 day mortality rate on

the k-th treatment arm. We use the difference in 28 day mortality rates θ = p1 −p0 as the measure

of treatment effect.

Supposing the accrual of N subjects on each treatment arm, a frequentist analysis of clinical trial

results was to be based on asymptotic arguments which suggest that p̂k =
∑N

i=1 Xki/N is approxi-

mately normally distributed with mean pk and variance pk(1−pk)/N . In a study which accrued N
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subjects per arm we therefore have an approximate distribution for the estimated treatment effect

θ̂ = p̂1 − p̂0 of

θ̂ ∼̇ N
(

θ,
p1(1 − p1) + p0(1 − p0)

N

)

. (1)

As is customary in the setting of tests of binomial proportions, at the time of data analysis the

actual frequentist test statistic will estimate a common mortality rate p̂ under the null hypothesis

of no treatment effect. Thus, if at the time of data analysis n0 and n1 patients had been accrued to

the placebo and treatment arms, respectively, and the respective observed 28 day mortality rates

were p̂0 and p̂1, the test statistic used to test the null hypothesis would be

Z =
p̂1 − p̂0

√

p̂(1 − p̂)
(

1
n1

+ 1
n0

)

,

where the common mortality rate under the null hypothesis is estimated by

p̂ =
n1p̂1 + n0p̂0

n0 + n1
.

In a fixed sample study, the 1,700 subjects (850 per arm) provide statistical power of 0.9066 to

detect the design alternative of θ = −0.07 when the control group’s 28 day mortality rate if 30%.

If the estimated variability of θ̂ at the conclusion of such a trial were to agree exactly with the

variance used in the sample size calculation, the null hypothesis would be rejected in a frequentist

hypothesis test if the absolute difference in 28 day mortality rates showed that the mortality on

the antibody arm was at least .0418 lower than that on the placebo arm (i.e., we would reject H0

if and only if θ̂ < − 0.0418).

2.2 Definition of Stopping Rules

A stopping rule is defined for a schedule of analyses occurring at sample sizes N1, N2, . . . , NJ .

For j = 1, . . . , J , we calculate treatment effect estimate θ̂j based on the first Nj observations. The
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outcome space for θ̂j is then partitioned into stopping set Sj and continuation set Cj . Starting

with j = 1, the clinical trial proceeds by computing test statistic θ̂j, and if θ̂j ∈ Sj , the trial is

stopped. Otherwise, θ̂j is in the continuation set Cj , and the trial gathers observations until the

available sample size is Nj+1. By choosing CJ = ∅, the empty set, the trial must stop at or before

the J-th analysis.

For the purposes of our illustration, we consider the stopping rule actually used in the sepsis

clinical trial. Using the nomenclature from the companion paper [1], the stopping rule Futil-

ity.8 is a level 0.025 one-sided stopping rules from the unified family [2] having O’Brien-Fleming

lower (efficacy) boundary relationships and upper (futility) boundary relationships corresponding

to boundary shape parameters P = 0.8. In this parameterization of the boundary shape function,

parameter P is a measure of conservatism at the earliest analyses. P = 0.5 corresponds to Pocock

boundary shape functions, and P = 1.0 corresponds to O’Brien-Fleming boundary relationships.

The choice P = 0.8 is thus intermediate between those two, and tends to be fairly similar to a

triangular test stopping boundary. Table 1 presents the stopping boundaries on the scale of the

crude estimate of treatment effect θ̂j for four equally spaced analyses.

3 Bayesian Paradigm

In the Bayesian paradigm, we consider a joint distribution p(θ, ~X) for the treatment effect parameter

θ and the clinical trial data ~X. The marginal distribution pθ(θ) is commonly termed the “prior”

distribution for the treatment effect parameter, because it represents the information about θ prior

to (in the absence of) any knowledge of the value of ~X. From a clinical trial, we observe data

~X = ~x and base inference on the conditional distribution pθ| ~X(θ| ~X = ~x), which is commonly

termed the “posterior” distribution. As with frequentist inference, we are interested in point and

interval estimates of a treatment effect, a measure of strength of evidence for or against particular

hypotheses, and perhaps a binary decision for or against some hypothesis. Commonly used Bayesian

inferential quantities include:
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1. Point estimates of treatment effect which are summary measures of the posterior distri-

bution such as the posterior mean (E(θ| ~X = ~x)), the posterior median (θ0.5 such that

Pr(θ < θ0.5| ~X = ~x) ≥ 0.5 and Pr(θ ≥ θ0.5| ~X = ~x) ≥ 0.5), or the posterior mode (θm

such that pθ| ~X(θm| ~X = ~x) ≥ pθ| ~X(θ| ~X = ~x) for all θ).

2. Interval estimates of treatment effect which are computed by finding two values (θL, θU ) such

that Pr(θL < θ < θU | ~X = ~x) = 100(1 − α)%. Various criteria can be used to define such

“credible intervals”:

(a) the central 100(1 − α)% of the posterior distribution of θ is defined by finding some ∆

such that θL = θ̂ − ∆ and θU = θ̂ + ∆ provides the desired coverage probability, where

θ̂ is one of the Bayesian point estimates of θ.

(b) the interquantile interval is defined by defining θL = θα/2 and θU = θ1−α/2, where θp is

the p-th quantile of the posterior distribution, i.e., Pr(θ < θp| ~X = ~x) = p.

(c) the highest posterior density (HPD) interval is defined by finding some threshold cα

such that the choices θL = min{θ : pθ| ~X(θ| ~X = ~x) > cα} and θU = max{θ : pθ| ~X(θ| ~X =

~x) > cα} provide the desired coverage probability. (Note that in the case of a multimodal

posterior density, this definition of a HPD interval may include some values of θ for which

the posterior density does not exceed the given threshold. Hence, one could ostensibly

define an HPD region that was smaller in this setting.)

3. Posterior probabilities of specific hypotheses, which might be used by Bayesians to make a

decision for or against a particular hypothesis. For instance, in the sepsis trial example, we

might be interested in computing the posterior probability of the null hypothesis Pr(θ ≥

0| ~X = ~x) or the posterior probability of the design alternative Pr(θ < − 0.07| ~X = ~x).

In specifying a Bayesian probability model, we most often specify the prior distribution pθ(θ)

and the likelihood function p ~X|θ(
~X |θ), rather than specifying the joint distribution p(θ, ~X) directly.
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Upon observation of ~X = ~x, the posterior distribution is then computed using Bayes rule as

pθ| ~X(θ| ~X = ~x) =
p ~X|θ(

~X |θ) pθ(θ)
∫

p ~X|θ(
~X |θ) pθ(θ) dθ

.

We note that the Bayesian inference presented above is unaffected by the choice of stopping

rule, so long as there is no need to consider the joint distribution of estimates across the multiple

analyses of the accruing data. That is, so long as one is content to regard inference at each analysis

marginally, then the stopping rule used to collect the data is immaterial. However, the expected

cost of a clinical trial does depend very much on the stopping rule used, even when Bayesian

inference is used as the basis for a decision.

3.1 Frequentist versus Bayesian Criteria (and the Role of the Likelihood Prin-

ciple)

As noted above, much of statistical inference is concerned with quantification of the strength of

statistical evidence in support of or against particular hypotheses and with quantification of the

precision with which we can estimate population parameters. There are two major categories of

such inferential methods: Bayesian and frequentist. Frequentist measures of statistical evidence

and precision such as the P value and confidence intervals are currently the most commonly used

approaches upon which statistical decisions are based, and frequentist optimality criteria for es-

timators such as bias and mean squared error are perhaps most commonly used for selecting the

estimators of treatment effect. However, frequentist inference by no means enjoys universal accep-

tance [3, 4]. Because frequentist inference merely provides information about the probability of

obtaining the observed data under specific hypotheses, it is not truly addressing the question of

greatest interest: After observing the data, what is the probability that a treatment is truly bene-

ficial? Bayesian inference answers this latter question by assuming a prior probability distribution

for the treatment effect, and then using the data to update that distribution. Many adherents of

Bayesian inference note that it, unlike frequentist inference, adheres to the Likelihood Principle [5].



Bayesian Evaluation of Group Sequential Designs - 11/08/2004, 8

The Likelihood Principle states that all information in the data relevant to discriminating between

hypotheses is captured by the ratio of the likelihoods under those hypotheses, and that inference

that is not based on that ratio is not as relevant.

Our position is that there is no true conflict between frequentist and Bayesian inference. In-

stead, they merely answer different questions. If we consider that there exists a joint distribution of

the parameter θ and the estimate θ̂ of that parameter, then frequentist inference and Bayesian in-

ference can be viewed as considering different conditional distributions derived from that same joint

distribution: Frequentist inference considers the conditional distribution p( ~X | θ), and Bayesian in-

ference considers the conditional distribution p(θ | ~X). It is this view that led us to focus primarily

on the evaluation of stopping rules under frequentist or Bayesian frameworks without regard for the

original derivation of the stopping rule. We regard that it is the role of statistics to help quantify the

strength of evidence used to convince the scientific community of conclusions reached from studies.

As we believe that otherwise reasonable people might demand evidence demonstrating results that

would not typically be obtained under any other hypothesis, our job as statisticians is to try to

answer whether such results have been obtained. These frequentist criteria were addressed in the

companion paper on the frequentist evaluation of stopping rules. We similarly believe that when

people demand evidence that overpowers their prior beliefs in a Bayesian framework, we should also

address those questions. It is this second situation that leads to the focus on Bayesian evaluation

of clinical trial designs in this paper. In adopting this position of accepting both frequentist and

Bayesian inferential measures, we are clearly taking the stance that the Likelihood Principle is not

the only guiding principle of all statistics.

As sequelae of this philosophy of using both frequentist and Bayesian inference to address

different standards of proof within the same setting, it would seem most appropriate to use the

same probability model in each approach. This philosophy also argues that it is never sufficient to

use any single prior distribution for the population parameters when providing Bayesian inference.

We address these issues in greater detail in the following sections.
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3.1.1 Coarsened Bayesian Approach

As noted above, Bayesian inference is based on the conditional distribution of the treatment effect

parameter θ| ~X = ~x. Frequentist inference, on the other hand, considers the conditional distribution

of the data ~X|θ. These two approaches to statistical inference are complementary when the same

probability model p(θ, ~X) is used for all inference. There is, however, a tendency for frequentists to

interpret their inference in a distribution-free manner, while the overwhelming majority of Bayesian

analyses are fully parametric.

The use of parametric analyses (and, indeed, most commonly used semiparametric analyses)

seems inappropriate in the scientific setting of most clinical trials. Most often, the scientific question

to be addressed when investigating a new treatment is whether the treatment results in a tendency

toward higher or lower values for some clinical outcome (but not both). Because of this primary

focus on the central tendency (or location) of some probability distribution, we might choose

measures of treatment effect based on the mean, median, proportion or odds above some clinically

relevant threshold, or the probability that a randomly chosen treated subject would have an outcome

larger than a randomly chosen subject receiving the control treatment (the de facto treatment effect

parameter tested with a Wilcoxon rank sum test). A parametric model in such a setting corresponds

to making assumptions more detailed than the question we are trying to address. For instance,

in the case of inference about the mean outcome, use of a parametric model is tantamount to

admitting that we do not know how the treatment affects the first moment of the distribution of

outcomes, but imagining that we do know how it affects the variance, skewness, kurtosis, and all

higher moments of the probability distribution. Not only does such an assumption seem illogical

based on the current state of knowledge at the start of a clinical trial, but it also seems unlikely that

the effect of a treatment on a population would truly be such that an assumption of this type might

hold. Instead, it is quite likely that unidentified subgroups would be either less or more susceptible

to a treatment. In that setting, a treatment that has some effect on the primary outcome would

tend to have a mixture distribution.

The foundational problem with parametric analyses is also present in those semiparametric
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probability models which assume that a finite dimensional parameter of interest and an infinite di-

mensional nuisance parameter related to a single population’s distribution provides full information

about the distribution of outcomes in every population. For instance, when comparing means or

medians, some data analysts consider a semiparametric location-shift model in which the control

group has some unknown distribution of outcomes (i.e., Pr(X0i < x) = F0(x) arbitrary), but that

the distribution of outcomes in the treatment group is known to have the shape shifted higher or

lower (i.e., Pr(X1i < x) = F0(x − θ)). Similarly, the proportional hazards model commonly used

in survival analysis allows an arbitrary distribution for the control population, with a relationship

between the control and treatment groups that would have Pr(X1i ≥ x) = [Pr(X0i ≥ x)]θ. In such

models, the semiparametric distributional assumption can be quite strong, and departures from

the assumption can adversely affect the statistical inference.

Clearly, when a treatment has some effect on the outcome, failure to have the correct parametric

or semiparametric model will mean that the probability statements associated with statistical

inference (e.g., P values, coverage probabilities, posterior means, unbiasedness) will not hold. In

some cases, however, frequentist testing can proceed, because it is based only on knowing the

distribution of the outcome under the null hypothesis. If the null hypothesis to be tested is that

the treatment has no effect on outcome whatsoever, then the null distribution of the estimated

treatment effect can be approximated by pooling all of the data (as is done with the asymptotic

test of two binomial proportions and the Wilcoxon rank sum test), by using only the control group’s

data (which, though not commonly done, could in some cases result in more powerful tests than

the other approaches described here), or by assuming some semiparametric model which reduces to

equivalence of distributions under the null (as is commonly done in the t test for equal variances and

proportional hazards models). In the latter instance, pooled estimates of the nuisance null variance

(in the case of the t test presuming equal variances) or the baseline survivor distribution (in the

case of proportional hazards model) can be used, because under the null hypothesis they would be

estimated correctly. The fact that any of these standard error estimates might be incorrect under

alternative distributions is immaterial, because by hypothesis that can only happen when the null

hypothesis is false. A problem does arise, however, when it comes to scientific interpretation of a
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significant test. For instance, it is easily shown that the t test presuming equal variances and the

Wilcoxon rank sum test will reject the null hypothesis with probability greater than the nominal

type I error in some cases where the treatment affects the variance of the outcome measurements

without affecting the mean, median, or probability that a randomly chosen treated individual has

a measurement larger than a randomly chosen individual in the control group. Because, as noted

above, most scientific questions are more closely related to central tendencies of the distribution of

outcome, this would suggest that the use of such semiparametric models may be misleading even

in the frequentist testing.

Fortunately, however, there are robust (distribution-free) probability models that do allow in-

ference about the most commonly used measures of treatment effect. Koprowicz, et al. [6] note

that so long as asymptotically normally distributed nonparametric estimates of treatment effect

are used along with correct modeling of how the standard errors of those estimates vary under all

alternatives, robust inference is possible. In fact, it is common for frequentist analyses to be based

on nonparametric estimates of treatment effect parameters. Modification of the standard error

estimates (e.g., using the t test for unequal variance rather than the t test for equal variance) then

provides robust inference about the treatment effect in large samples. Such an approach can also be

used for robust Bayesian inference as explored by Pratt, et al. [7], Boos and Monahan [8], Monahan

and Boos [9], and Koprowicz, et al. [6]. In the clinical trial setting, using such an approach allows

frequentist and Bayesian inference to be based on the same probability model– a condition not

easily duplicated when nonparametric Bayesian inference is based on Dirichlet process priors.

We relax some of the more restrictive assumptions of a parametric or semiparametric model and

adopt a robust approach here. A nonparametric estimator θ̂N = t( ~X = (X1, . . . ,XN )) consistent for

the treatment effect parameter θ is viewed as a coarsening of the data. In a wide variety of settings,

the nonparametric estimator can be shown to be approximately normally distributed with large

sample sizes. Hence, we consider the Bayesian paradigm based on a joint distribution p(θ, θ̂) with

marginal (prior) distribution pθ(θ) for the treatment effect parameter and approximate likelihood

based on an asymptotic distribution θ̂N ∼̇N (θ, V (θ)/N). Hence, the posterior distribution for θ|θ̂N
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is computed according to

p̂θ|θ̂N

(θ|θ̂N ) =

√

N
V (θ)φ

(

(θ̂N−θ)√
V (θ)/N

)

pθ(θ)

∫

√

N
V (θ)φ

(

(θ̂N−θ)√
V (θ)/N

)

pθ(θ) dθ

.

Such a coarsening of the data has little effect on the efficiency of Bayesian inference when the

nonparametric estimator is in fact a sufficient statistic for the data. In that case, the only loss of

efficiency is from using the approximate normal distribution of the sufficient statistic rather than

the exact distribution [6].

3.1.2 Choice of Prior Distributions

Bayesian inference depends heavily on the choice of prior distribution pθ(θ) for the treatment

effect parameter. For that reason, Bayesian inferential procedures have sometimes been criticized

because it is not clear how the prior distribution should be selected for any particular problem.

When relevant prior data are available, it would seem most sensible to use that prior data to

derive a prior distribution. Most often, however, the exact relevance of data from pilot studies is

unclear due to changing inclusion/exclusion criteria, changing definitions of the study treatment,

and changing standards of ancillary care. Hence, the prior distribution is probably best regarded

as a subjective probability measuring an individual’s prior belief about the treatment effect.

Much has been written in the statistical literature about methods of eliciting priors from a

consensus of experts, as well as the need to consider a range of priors which cover both “pessimistic”

and “optimistic” priors [4, 10]. While examining inference specific to a single “expert” prior is

indeed often of interest, we regard the sensitivity analysis approach as the more important one. We

believe that many Bayesian data analysts’ failure to do so in the past is, at least in part, responsible

for the lack of greater penetrance of Bayesian methods into the applied clinical trials literature.

That is, the purpose of scientific experimentation is to present to the scientific community (for

early phase trials) and larger clinical community (for phase III studies leading to the adoption
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of new treatments) credible evidence for or against specific hypotheses. As a general rule, the

investigators collaborating on a particular clinical trial are likely to be more optimistic about that

new treatment’s benefits than the typical member of the scientific community. For instance, Carlin

and Louis [11] describe a setting in which the likelihood function suggested a harmful treatment, but

several clinicians had put no prior mass on the possibility of a negative treatment effect. A Bayesian

analysis incorporating only their prior would likely be too biased for general utility. Furthermore,

the role of a prior is buried too deeply in the computations of a posterior distribution to allow a

reader to assess the impact of a different prior on the types of Bayesian inference routinely provided.

Hence a standard of presentation is needed which will convey trial results for a wide spectrum of

assumed prior distributions.

The approach we take is to use a spectrum of normal prior distributions specified by their

mean and standard deviation. Such a choice has several advantages, as well as disadvantages. The

primary advantage is that a normal prior is specified entirely by two parameters, greatly reducing

the dimension of the space of prior distributions to be considered, while still covering a very broad

range of choices for the prior. Furthermore, means and standard deviations are commonly used and

understood by many researchers. The mean of the prior distribution will in some sense measure

the optimism or pessimism in the prior, and the standard deviation of the prior distribution can be

regarded as a measure of dogmatism in those prior beliefs, with lower standard deviations for the

prior indicative of more dogmatic beliefs about the benefit or lack of benefit (harm) of the treatment

a priori. Many researchers are also quite familiar with common properties of the “bell-shaped”

curve, such as the fact that approximately 95% of the measurements are within two standard

deviations of the mean.

This approach is probably the most obvious standard in a setting in which investigators have not

truly characterized their entire prior distribution, but do have ideas of a prior mean and standard

deviation for the treatment effect parameter. In this setting, using a normal prior will tend to

underestimate the amount of information in an individual’s true prior. The normal distribution

is known to maximize entropy over the class of all priors having the same first two moments.

This property suggests that in our approach we will in some sense use the least informative of



Bayesian Evaluation of Group Sequential Designs - 11/08/2004, 14

all distributions that could reasonably reflect an individual’s true prior. This is beneficial to the

extent that many researchers tend to voice priors that are too dogmatic for the available prior

information or, indeed, their actions. This is potentially deleterious if an individual’s well-based

prior is more informative than the normal prior with the same mean and standard deviation. In the

latter case, a Bayesian analysis with a normal prior may suggest that the data has overwhelmed

an investigator’s initial belief, when it in fact has not. This latter problem can be ameliorated

somewhat by the investigator considering other normal priors that are either more informative

(i.e., priors having lower standard deviations), more extreme (i.e., priors having means that are

further from the observed value of θ̂), or both.

The choice of normal priors also offers a computational advantage when the distribution of the

treatment effect estimate does not exhibit a mean-variance relationship, i.e., when V (θ) is constant.

In this case, the normal distribution is the conjugate prior for the asymptotic distribution of θ̂|θ,

and the posterior distribution is then known to be normal as well. This computational advantage

is increasingly less important, however, with the advent of advanced computational methods such

as Markov chain, Monte Carlo.

Under the probability model θ̂N | θ∼̇N (θ, V/N) (so no mean-variance relationship) and a prior

distribution θ ∼ N (ζ, τ2), the posterior distribution for the treatment effect is

θ | θ̂N ∼̇N
(

(1/τ2)ζ + (N/V )θ̂N

(1/τ2) + (N/V )
,

1

(1/τ2) + (N/V )

)

.

It is often useful to measure the variance of the prior distribution as the “effective sample size” in

the prior information. That is, if N0 = V/τ2, the prior distribution is as informative as the posterior

distribution from a Bayesian analysis of a sample of N0 subjects and an initially noninformative

prior. Similarly, for a study having sample size N , the ratio V/(Nτ2) measures the statistical

information presumed in the prior relative to the statistical information contributed by the new

data.
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4 Evaluation of Stopping Rules

The Bayesian evaluation of stopping rules proceeds much the same as for the evaluation of stopping

rules with respect to frequentist inference. The major difference relates to the magnitude of the

results that need to be presented. When evaluating a stopping rule with respect to frequentist

inference, we present the estimate, confidence interval, and P value for clinical trial results corre-

sponding to the stopping boundaries. For Bayesian inference, we must consider how that inference

is affected by the choice of prior.

We illustrate Bayesian evaluation of a stopping rule in the context of the sepsis clinical trial

example. For ease of presentation, in the example presented here, we suppress the mean-variance

relationship inherent in the binomial probability model. Hence, in evaluating the design, we use a

variance V = 0.7742, which corresponds to the average variance contributed by each observation

under the design alternative of 30% 28 day mortality on the control arm and 23% 28 day mortality

on the antibody arm.

We specify a pessimistic prior in order to judge whether trial results corresponding to a decision

for efficacy (i.e., below the lower stopping boundary) are so strong as to convince a person who

believed the new treatment was not efficacious, or even was harmful. Similarly we specify an

optimistic prior in order to judge the strength of evidence when trial results correspond to a

decision that the new treatment is not sufficiently efficacious to warrant further study. We also

consider a prior representing the consensus of opinion of trial collaborators and consultants to the

trial sponsor.

A pessimistic prior for this trial might be centered at a prior mean of ζ = 0.02, suggesting that

treatment with the antibody provides harm to the population of treated patients. An optimistic

prior, on the other hand, might be centered on a prior mean of ζ = −0.09, representing a treatment

effect greater than the 7% absolute improvement in 28 day mortality used in the sample size

computation. The strength of optimism or pessimism in the prior is also affected by the standard

deviation of the prior distribution for the treatment effect. For instance, a choice of τ = 0.015
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is relatively dogmatic, because it suggests that accrual of the full sample size of 1700 subjects

provides only half the amount of information about the treatment effect as is already included in

the prior. As τ becomes very large, the prior is increasingly less informative about the magnitude

of the treatment effect.

When this phase III sepsis study was conducted, preliminary data was available from several

phase II and phase III studies which showed some promising trends toward benefit, especially

in some important subgroups. Given this preliminary data, it would seem quite reasonable to

base a prior for θ on the analysis results from those previous studies. Several factors mitigate

against doing this blindly, however. First, although it was scientifically plausible that greater

treatment effect might be seen in the subgroups identified in the earlier studies, identification of

the subgroups of greatest interest was in fact based on some post hoc data-driven analyses. Because

Bayesian analyses are no more able than frequentist analyses to handle the multiple comparison

issues inherent in such data dredging, it is wise to discount the results from the earlier studies in

anticipation of some “regression to the mean”. Also, the inclusion/exclusion criteria were modified

for the planned study, so it would be inappropriate to assume that the statistical information in the

prior should reflect the full sample size previously exposed to the antibody. A reasonable subjective

prior based on the preliminary studies might then consider a prior mean for θ of ζ = −0.04, and the

statistical information presumed in the prior might correspond to the prior distribution having a

standard deviation of τ = 0.04, which suggests that the information in the data from 1700 subjects

is approximately 3.5 times the information that is presumed in the prior.

The general idea is then to present the inference which would be made if the study were to stop

with specific results. Table 1 presents the posterior probability of a beneficial treatment (i.e., the

posterior probability that θ < 0) for trial results corresponding exactly to the efficacy boundary

and, for trial results corresponding to the futility boundary, the posterior probability that the

treatment is not sufficiently beneficial to warrant further study (i.e., the posterior probability that

θ > −0.087, which is the alternative for which the planned study has power 0.975). The priors

considered in Table 1 include the optimistic, sponsor’s consensus, and pessimistic priors centered

at ζ = −0.09, -0.04, and 0.02, respectively, with standard deviations corresponding to a high level



Bayesian Evaluation of Group Sequential Designs - 11/08/2004, 17

Table 1: Posterior probabilities of hypotheses for trial results corresponding to stopping boundaries of Futility.8 stopping rule

with four equally spaced analyses after 425, 850, 1275, and 1700 subjects have been accrued to the study. Posterior probabilities
are computed based on optimistic, the sponsor’s consensus, and pessimistic centering of the priors using three levels of assumed
information in the prior. The variability of the likelihood of the data corresponds to the alternative hypothesis: event rates of

0.30 in the control group and 0.23 in the treatment group.

Efficacy (lower) Boundary Futility (upper) Boundary

Posterior Probability of Posterior Probability of
Beneficial Treatment Effect Insufficient Benefit

Pr(θ < 0|X) Pr(θ ≥ −0.087|X)

Crude Est Sponsor’s Crude Est Sponsor’s
Analysis of Trt Optimistic Consensus Pessimistic of Trt Optimistic Consensus Pessimistic

Time Effect ζ = −.09 ζ = −.04 ζ = .02 Effect ζ = −.09 ζ = −.04 ζ = .02

Dogmatic Prior: τ = 0.015
1:N=425 -0.170 1.000 1.000 0.524 0.047 0.795 1.000 1.000
2:N=850 -0.085 1.000 1.000 0.523 -0.010 0.824 1.000 1.000
3:N=1275 -0.057 1.000 1.000 0.522 -0.031 0.836 1.000 1.000
4:N=1700 -0.042 1.000 1.000 0.521 -0.042 0.842 1.000 1.000

Consensus Prior: τ = 0.040
1:N= 425 -0.170 1.000 1.000 0.991 0.047 0.981 0.999 1.000
2:N= 850 -0.085 1.000 0.998 0.974 -0.010 0.976 0.997 1.000
3:N=1275 -0.057 0.999 0.993 0.955 -0.031 0.970 0.994 1.000
4:N=1700 -0.042 0.998 0.987 0.936 -0.042 0.963 0.991 0.999

Noninformative Prior: τ = ∞
1:N= 425 -0.170 1.000 1.000 1.000 0.047 0.999 0.999 0.999
2:N= 850 -0.085 0.998 0.998 0.998 -0.010 0.995 0.995 0.995
3:N=1275 -0.057 0.989 0.989 0.989 -0.031 0.988 0.988 0.988
4:N=1700 -0.042 0.977 0.977 0.977 -0.042 0.981 0.981 0.981

of dogmatism, the sponsor’s consensus, and noninformative τ = 0.015, 0.04, and ∞, respectively.

This table illustrates the impact that choice of prior can have on Bayesian inference.

For instance, the Futility.8 design ultimately selected as the stopping rule for the clinical trial

would suggest that the trial would be stopped for efficacy (i.e., the trial results suggest a true

benefit due to treatment with antibody) if the estimate of treatment effect were θ̂ = −0.0866 after

850 subjects (425 per arm) had been accrued to the study. With a dogmatic prior centered on a

pessimist’s belief that the treatment was truly harmful, the posterior probability of a true benefit

due to treatment is only 0.523 after obtaining such results. Equally dogmatic priors centered at the

sponsor’s consensus prior belief or an optimist’s prior belief of treatment effect suggest near certain

posterior probabilities of treatment benefit. As less dogmatic priors corresponding to the level

of information in the sponsor’s consensus prior are used, those posterior probabilities are 0.974,

0.998, and 1.000. When noninformative (flat) priors are used as the basis for Bayesian inference,

identical values are obtained for the pessimistic, sponsor’s consensus, and optimistic centering of



Bayesian Evaluation of Group Sequential Designs - 11/08/2004, 18

the priors: a posterior probability of a beneficial treatment of 0.998. This latter result is exactly

1 minus the fixed sample P value for this trial outcome (see Table 1 in the companion paper on

frequentist evaluation [1])– a correspondence that is obtained whenever a flat prior is used for

Bayesian inference.

The difference between the conservatism of the efficacy and futility boundaries for this trial is

evident in the Bayesian posterior probabilities corresponding to stopping at each analysis. The

Futility.8 design would suggest that the trial would be stopped for futility (i.e., the trial results

do not suggest sufficient benefit from the treatment to warrant further study of the antibody in

this clinical trial) if the estimate of treatment effect were θ̂ = −0.0097 after 850 subjects (425 per

arm) had been accrued to the study. Under the sponsor’s consensus prior, the posterior probability

Pr(θ > −.0866| ~X) = 0.997 is slightly less certain than that when stopping for efficacy.

Although such a prior fairly accurately reflects the prior beliefs elicited from the study sponsors

during the selection of the stopping rule, as noted above, it is important to also report the result of

Bayesian analyses for a spectrum of priors. For instance, one logical strategy would be to evaluate

the futility boundary under an optimistic prior, because the burden of proof for establishing futility

should be to convince the optimists. Similarly, the efficacy boundary might be evaluated under

a pessimistic prior. It is interesting to note from Table 1 that the futility boundary is somewhat

paradoxically anti-conservative from the viewpoint of a researcher with the optimistic, dogmatic

prior: Stopping for futility at the first analysis confers less certainty about an insufficiently effective

treatment than does the stopping boundary at later analyses.

The optimistic and pessimistic priors presented in Table 1 were chosen rather arbitrarily, and

thus may not be relevant to some of the intended audience for the published results of a clinical

trial. We thus can also present contour plots of Bayesian point estimates (posterior means), lower

and upper bounds of 95% credible intervals, and posterior probabilities of the null and alternative

hypotheses for a spectrum of prior distributions.

The mean and standard deviation of the prior distribution is probably the most scientifically

relevant, while being statistically concise, way to specify the normal prior, as both the mean and
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standard deviation are in the units of the treatment effect parameter itself. For this reason, when

displaying Bayesian inferential statistics as a function of the prior in a contour plot, we label the

x-axis by the mean of the normal prior and the y-axis by the prior standard deviation. However,

there are additional scales on which it is at times useful to characterize the prior distribution. In the

case of the prior mean for the treatment effect parameter θ, it is often useful to consider the power

of the designed clinical trial to detect a particular value of θ. This is particularly the case when

the stopping rule corresponds to a frequentist trial design in which the study has been adequately

powered to detect the minimal treatment effect judged to be of clinical importance. We thus find

it useful at the top of the contour plot to provide readers with an alternative labeling of the x-axis

according to the power of a frequentist test based on the stopping rule.

Similarly, at the right side of the contour plot, we provide readers with an alternative scale for

the standard deviation of the prior distribution. When using a conjugate normal prior distribution

with a normal sampling distribution for the estimated treatment effect, the mean of the posterior

distribution for θ|θ̂ is a weighted average of the prior mean and θ̂, where the weights are the

statistical information in the prior (equal to 1/τ2, where τ is the standard deviation of the prior

distribution) and the statistical information in the approximate likelihood for θ̂ (equal to N/V (θ)).

It may therefore be of interest to consider the ratio of information presumed in the prior to the total

information expected if the study were to continue until the maximal sample size were accrued. On

the right axis of the contour plot we display for selected values of τ the value of NJ/(V (θ)τ2). As

that ratio goes to 0 (equivalently, as τ becomes large), the prior is tending to be “noninformative” in

that all information in the posterior distribution is derived from the data rather than from the prior.

Bayesian inference with noninformative priors result in similar point estimates, confidence intervals,

and statistical decisions as derived under frequentist procedures, though the interpretation of those

inferential measures remains different.

As a general rule, we might expect that priors which contain more information than would

be present in the maximal sample size for the study would not be very reasonable for the study

investigators as a whole (Why would they bother doing the study if the complete data were unable

to sway their opinion?). Nonetheless, other members of the scientific community may indeed have
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such dogmatic priors.

Lacking any other particular criteria by which to choose the range of means ζ and standard

deviations τ for the prior distribution which should be considered, we choose values of prior mean ζ

corresponding to the values of θ for which the frequentist test based on the stopping rule would have

power between 0.001 and 0.999, and we choose values of the standard deviation τ corresponding

to prior information ranging between one-twentieth to four times as much information as would be

present in the data should the study continue until 1700 subjects were accrued. Figure 1 presents

contours of the Bayesian point estimate of treatment effect which would be reported under the

spectrum of priors described above. From the plot we see that use of the sponsor’s consensus prior

of θ ∼ N (ζ = −0.04, τ2 = .042) would suggest that upon observing a difference in proportions

of -0.0097, the mean, median, and mode of the posterior distribution is -0.021. Note that an

individual who before the study was quite sure the treatment worked and thus had a prior of

θ ∼ N (ζ = −0.08, τ2 = .0152) would use the posterior mean of -0.067 as the point estimate of

treatment effect. Of course, such an individual was assuming a prior that was twice as informative

as would be provided by data on 1700 subjects, as indicated by the dotted horizontal line.

Similar contour plots can be constructed for the lower and upper bounds for the 95% credible

interval, as well as the posterior probability of the null and design alternative hypotheses. At the end

of a clinical trial, contour plots such as these can be used in a report of Bayesian inference, thereby

allowing readers to assess the credibility of the results across a wide range of priors. At the design

phase, when we are trying to assess the Bayesian operating characteristics of the entire stopping rule,

such plots can be shown for results which correspond to each of the stopping boundaries. Figure

2 shows such a plot for a stopping rule with boundaries the same shape as those for Futility.8,

but having only two analyses: one interim analysis halfway through the study (i.e., after 425

patients accrued to each arm) and the final analysis when 1700 subjects (850 per arm) have been

accrued. The contours in each panel are the posterior probability that the decision made by the

frequentist stopping rule is correct. Thus for the futility (upper) boundary which rejects (with

97.5% confidence) the design alternative H1 : θ < − 0.085, we display the posterior probability

Pr(θ > −0.085|(M, θ̂NM
)) for each of the futility (upper) boundaries, where M is the analysis
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Figure 1: Contours of posterior mean (median) conditional on observing an estimated treatment
effect of -0.0097 after accruing 850 subjects (425 per arm). Contours are displayed for normal prior
distributions as a function of the mean (median) and standard deviation of the prior distribution,
with the prior corresponding to the sponsor’s consensus prior indicated by an X. Top axis displays
the power of the hypothesis test corresponding to stopping rule Futility.8, and the right hand axis
displays the prior information in the prior as a proportion of the statistical information in a sample

size of 1700 subjects (850 per arm).

index and θ̂NM
is the difference in proportions which corresponds to the futility boundary at that

analysis. Similarly, for the efficacy (lower) boundary which rejects (with 97.5% confidence) the null

hypothesis H0 : θ ≥ 0, we display Pr(θ < 0|(M, θ̂NM
)) for each of the efficacy (lower) boundaries.

The leftmost panel in each row are the contours for the corresponding prior probability of each

hypothesis.
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Figure 2: Contours of posterior probabilities at the boundaries for a stopping rule having a max-
imum of 2 analyses and boundary shapes similar to the Futility.8 stopping rule. The upper row
relates to decisions for futility: to reject the alternative hypothesis that θ < −0.0849 (the alternative
for which the design has 97.5% power) or, equivalently, to accept the hypothesis that the treatment
is not sufficiently beneficial (θ > −0.0849). The lower row relates to decisions for efficacy: to reject
the null hypothesis that θ ≥ 0 or, equivalently, to accept the hypothesis that the treatment has
some beneficial effect (θ < 0). In each row, the leftmost column considers the prior probability that
the decision to reject the corresponding hypothesis will be correct, the middle column considers
the posterior probability that the decision reached at the first interim analysis (with 850 subjects
accrued, 425 per arm) will be correct, and the rightmost considers the posterior probability of
a correct decision at the final analysis (with 1700 subjects accrued, 850 per arm). Contours are
displayed for normal prior distributions as a function of the mean (median) and standard deviation
of the prior distribution, with the prior corresponding to the sponsor’s consensus prior indicated
by an X. Top axis displays the power of the hypothesis test corresponding to the stopping rule,
and the right hand axis displays the prior information in the prior as a proportion of the statistical

information in a sample size of 1700 subjects (850 per arm).

From Figure 2, we see that the sponsor’s consensus prior corresponded to a P (θ > −0.085)

slightly less than 0.9. Stopping for futility at the interim analysis corresponds to a posterior

probability that θ > −0.085 between 0.99 and 0.999. It can also be seen that for all but the

most dogmatic of prior beliefs that the treatment had a marked benefit, stopping for futility at
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the interim analysis corresponds to a posterior probability greater than 0.9 that the treatment

does not provide as much as a 0.085 improvement in 28 day mortality. Similar evaluation of the

efficacy boundary can be made by considering the lower row of contour plots, where the greater

conservatism of the O’Brien-Fleming boundary relationship at the interim analysis leads to higher

posterior probabilities than are present for the futility boundary corresponding to a boundary shape

parameter of P = 0.8 (compare, for instance, the contours for posterior probabilities of 0.99 across

the two boundaries).

It is also possible to consider Bayesian prior distributions when evaluating stopping probabilities

and sample size distributions. Figure 3 displays the contours of the predicted sample size for the

Futility.8 boundary for a spectrum of prior distributions. For this plot however, we find it useful

to use truncated normal prior distributions. As the standard deviation of a normal prior increases,

increasing prior probability is placed on very extreme values of θ. In a stopping rule with two

boundaries, as the treatment effect θ gets very large or very small, the trial will tend to stop

at the first analysis with probability approaching 1. Thus noninformative priors will all tend to

suggest that the predicted sample size is that which corresponds to the timing of the first analysis.

To downplay such effects, for contour plots of the expected sample size we truncate the normal

distribution at specified values of θ, and renorm the prior so that it integrates to 1. For Figure 3

we arbitratily truncated the prior distribution at the values of θ for which the Futility.8 stopping

rule had power of 0.001 and 0.999. From this figure we see that under such a truncation of the

sponsor’s consensus prior the average sample size accrued to the study is between 1150 and 1200.

We note that as the standard deviation of the prior approaches 0, the lower limits of the contour

plot should correspond to the ASN curve for the stopping rule as shown in Figure 5b.

We can also use Bayesian methods to address the issue of economically important estimates

of treatment effect. When obtaining such an attractive estimate is of major importance, Bayesian

predictive probabilities may also be of use in judging whether it is useful to continue a clinical trial

in the hopes of obtaining an economically attractive estimate of treatment effect.

The Bayesian predictive probability is the probability that the estimate would exceed some
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Figure 3: Contours of expected sample sizes for the Futility.8 stopping rule based on truncated
normal priors. Contours are displayed for truncated normal prior distributions as a function of the
mean (median) and standard deviation of the normal distribution, with truncation at the values
corresponding to the 0.001 and 0.999 power points for the stopping rule. The prior corresponding
to the sponsor’s consensus prior is indicated by an X. Top axis displays the power of the hypothesis
test corresponding to the stopping rule, and the right hand axis displays the prior information in
the untruncated prior as a proportion of the statistical information in a sample size of 1700 subjects

(850 per arm).

specified threshold at a particular analysis. The computation uses the updated distribution of

the treatment effect parameter at the j-th analysis (i.e., the posterior distribution conditioned

on the observed data at the j-th analysis) along with the sampling distribution of the as yet

unobserved data. Using the coarsened approach based on the approximate normal distribution for

the estimated difference in 28 day mortality rates and the computationally convenient conjugate
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normal prior θ ∼ N(ζ, τ2), at the jth analysis we can define an approximate Bayesian posterior

distribution for the true treatment effect θ conditioned on the observation θ̂j as

θ|θ̂j∼̇N
(

θ̂jτ
2 + ζσ2/Nj

τ2 + σ2/Nj
,

τ2σ2/Nj

τ2 + σ2/Nj

)

.

Then, using the sampling distribution for the as yet unobserved data and integrating over the

posterior distribution, the predictive distribution for the estimate θ̂J at the final analysis is

θ̂J |θ̂j∼̇N
(

(τ2 + σ2/NJ)Πj θ̂j + (1 − Πj)ζσ2/NJ

Πjτ2 + σ2/NJ
,
(1 − ΠJ)(τ2 + σ2/NJ )σ2/NJ

Π2
j(ΠJτ2 + σ2/NJ)

)

.

We might therefore compute a predictive probability of an economically attractive treatment esti-

mate less than some threshold c as

∫

Pr(θ̂J < c |Sj = sj, θ) p(θ |Sj = sj) dθ = Φ

(

[Πjτ
2 + σ2/NJ ][c − θ̂j ] + [1 − Πj][θ̂j − ζ]σ2/NJ

√

[1 − Πj][τ2 + σ2/NJ ][Πjτ2 + σ2/Nj ]σ2/NJ

)

.

The case of a noninformative (although improper) prior is of special interest. When we consider

taking the limit as τ2 → ∞), the predictive probability becomes

∫

Pr(θ̂J < c |Sj = sj, θ) p(θ |Sj = sj) dθ = Φ

(

(c − θ̂j)
√

Πj
√

[1 − Πj]σ2/NJ

)

.

For instance, for a result corresponding to a crude estimate of treatment effect of -0.0566 at

the third analysis, the predictive probability of obtaining a crude estimate of treatment effect less

than -0.06 at the final analysis is 35.0% under the sponsor’s consensus prior and 39.0% under

a noninformative prior. In either case, such high probabilities of obtaining a more economically

viable estimate of treatment effect may be enough to warrant modifying the stopping rule to avoid

early termination at the third analysis with a crude estimate between -0.0566 and -0.06. On the

other hand, had the minimal economically viable estimate been -0.08, the predictive probabilities

of obtaining such an estimate at the fourth analysis after observing -0.0566 at the third analysis are

1.92% and 2.86% under the sponsor’s consensus and noninformative priors, respectively, and such
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low probabilities would likely be regarded as support for a clinical trial design based on a smaller

maximal sample size.

5 Summary

In this manuscript we have described a general approach to the evaluation of a stopping rule

with respect to its Bayesian operating characteristics. Such evaluation is complementary to the

exploration of frequentist operating characteristics described in our companion paper [1]. Using

a prior distribution for the parameter measuring treatment effect, the Bayesian evaluation of the

clinical trial design might typically include the following analogues to the frequentist evaluation

criteria:

1. The sample size distribution averaged across a Bayesian prior distribution for the true treat-

ment effect.

2. The Bayesian predictive probability that the trial would continue to each analysis.

3. The Bayesian inference (posterior mean or mode, credible intervals, and posterior probabilities

of hypotheses) which would be reported were the trial to stop with results corresponding

exactly to a boundary.

4. The Bayesian predictive probability of obtaining a point estimate which exceeds some eco-

nomically relevant threshold.

Each of the above criteria will, of course, vary according to the prior distribution assumed for

the parameter measuring treatment effect. Because different people will have different priors, it is

important that an attempt be made to communicate how the Bayesian operating characteristics

will vary as a function of the prior distribution. In this paper, we have suggested that a contour

plot would be presented for each of the most important measures. This will not, however, always

be feasible for every Bayesian analysis, and thus standards will also have to be adopted for a more
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parsimonious presentation of Bayesian analyses. Numerical results based on a single consensus prior

may be acceptable when there is widespread agreement on the prior. Other times the strength of

evidence may be sufficiently strong that one can simply document the most pessimistic prior still

consistent with decisions for treatment benefit or the most optimistic prior still consistent with

decisions for lack of benefit. In any case, the general “coarsened Bayesian” approach would argue

that a sufficient statistic for a reader to apply his or her own prior would be the estimate θ̂ and the

standard error estimate, when that estimator is approximately normally distributed. We note that

such an estimator will not in general correspond to the least biased frequentist estimate. Thus, it

will generally be the case that the clinical trial results should report both the unadjusted estimator

and an estimator adjusted for the stopping rule.

In this paper and its companion paper, we have made the case for frequentist and Bayesian

evaluation of clinical trials. We have not addressed other methods such as those based purely on

the Likelihood principle. Though quantification of statistical evidence via the Likelihood principle

has received much attention [12, 13, 14], we have chosen not to consider these methods in our

evaluation of clinical trials. The absence of a discussion on this topic stems from the fact that

the definition of statistical evidence via the ratio of likelihoods does not provide any probabilistic

interpretation regarding the effect of an experimental treatment. Likelihood ratio values of 8 and

32 have been proposed for distinguishing between weak, moderate and strong evidence in favor

of one hypothesis over another [13], yet without a probabilistic interpretation of the value of the

likelihood ratio the relevance of these cutoffs is questionable in our minds. Similar problems exist

with the construction of support intervals for parameter estimation via the Likelihood principle.
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