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Summary

Longitudinal endpoints are used in clinical trials, and the analysis of the results is
often conducted using within-individual summary statistics. When these trials are moni-
tored, interim analyses that include subjects with incomplete follow-up can give incorrect
decisions due to bias by non-linearity in the true time trajectory of the treatment effect.
Linear mixed-effects models can be used to remove this bias, but there is a lack of soft-
ware to support both the design and implementation of monitoring plans in this setting.
This paper considers a clinical trial in which the measurement time schedule is fixed (at
least for pre-trial design), and the scientific question is parameterized by a contrast across
these measurement times. This setting assures generalizable inference in the presence
of non-linear time trajectories. The distribution of the treatment effect estimate at the
interim analyses using the longitudinal outcome measurements is given, and software to
calculate the amount of information at each interim analysis is provided. The interim in-
formation specifies the analysis timing thereby allowing standard group sequential design
software packages to be used for trials with longitudinal outcomes. The practical issues
with implementation of these designs are described; in particular, methods are presented
for consistent estimation of treatment effects at the interim analyses when outcomes are
not measured according to the pre-trial schedule. Splus/R functions implementing this
inference using appropriate linear mixed-effects models are provided. These designs are
illustrated using a clinical trial of statin treatment for the symptoms of peripheral arterial
disease.
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software.

1. Introduction

In clinical trials treatment effects are often evaluated with a continuous outcome that

is measured repeatedly over time on each subject. Longitudinal endpoints are used for

many reasons[1] all of which stem from a basic scientific interest in the nature of the time

trajectory of treatment effects. Within-subject summary statistics such as the minimum[2],

maximum[3], rate of change[4,5], or average[6] can be used to focus statistical inference on

a clinically relevant aspect of the time trajectory[7].

In most situations the time trajectory of treatment effects is likely to be non-linear,

and data-driven parameterizations of non-linearities are unlikely to extend beyond the

observed time range. Estimation of treatment effects in this setting can lead to inference

that changes with the length and distribution of follow-up measurement times; thus for

example, the average outcome will change over time unless treatment effects happen to be

constant. A treatment effect estimator will be unbiased for a fixed follow-up distribution,

but will not necessarily generalize to any pattern or length of follow-up.

In clinical trials it is common to plan for follow-up at regular intervals, and as a conse-

quence, trial results are interpretable as the effects measured with complete follow-up over

the particular choice of measurement times. Thus, in a fixed-sample study (i.e., without

interim analyses) inference is unbaised for the follow-up distribution and generalization is

conditional on that distribution. The addition of interim analyses to a fixed-sample trial

introduces the possibility that the distribution of measurement times at interim analyses

will differ from that of the fixed-sample study. This will happen when at interim analyses

there are subjects who have not yet completed all follow-up measurements, and as a result,

the inference at interim analyses will be biased relative to that of the final analysis[8]. This

is an issue with all methods for selecting interim decision rules including frequentist meth-

ods[9], error spending approaches[10], curtailment designs[11], and Bayesian methods[12].
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The analysis of longitudinal endpoints is often conducted using either linear mixed-

effects models[13,14], generalized estimating equations[15,16], or a 2-stage approach in

which treatment effects are compared after first calculating a meaningful summary statistic

on each subject[6,7] (additional discussion and references are provided in Jennison and

Turnbull [17, pg 233]). Unbiased inference is possible as long as the incomplete data are

missing at random or completely at random[18] which is commonly the case at interim

analyses. Linear mixed-effects models[19] or equivalent methods for imputation[20] can be

applied to get unbiased inference. The problem can also be approached by parameterizing

the time trajectory[21, 17 pg 68], however continuous-time models are also subject to bias

at the interim analyses if the time-trajectory is misspecified.

To illustrate, we will consider a controlled trial of statin treatment for the symptoms

of peripheral arterial disease[22]. Peripheral arterial disease (PAD) can lead to pain in the

legs that prevents walking, which in turn contributes to progression of the disease. There

is interest in determining if statin treatment may assist in the treatment of the symptoms

of PAD. The primary outcome is the time that a patient can walk on a treadmill before

they are stopped by pain (i.e., peak walk time or PWT), and this will be measured at

regular intervals following randomization. When designing the PAD trial we might choose

the average PWT over the follow-up times as the scientifically meaningful measure of

treatment effect within each patient so that treatments are compared based on the average

of this within-patient summary measure.

The objective of this paper is to describe how to design and implement interim analyses

in clinical trials with longitudinal endpoints. Although previous work has shown that

unbiased inference at interim analyses is possible, there is a lack of software to support the

pre-trial evaluation of interim decision rules and the implementation of the design when the

measurement times differ from the pre-trial plan. We present software to extend standard

group sequential design packages to include longitudinal endpoints and to address the

practical issues faced when implementing such a design. Section 2 presents the methods



Group Sequential Trials With Longitudinal Data; Page 4

and section 3 illustrates their application to the PAD example described above.

2. Summary Statistics and Group Sequential Trials

2.1 Within-Subject Summary Statistics

Let Yik(t) denote the outcome for the kth individual in treatment group i (i = 0, 1)

at time t after study entry. Suppose that there will be a total of NJ individuals in each

treatment group (i.e., k = 1, ..., NJ)1. Furthermore, suppose that the outcome will be

measured at times t = T0 < T1 < T2 < ... < TL for each individual (with T0 = 0 denoting

the baseline measurement). As discussed above, we assume a fixed follow-up interval in

order to assure generalizability. Let Yik denote the outcome vector at the L time points.

Suppose that Yik(t) has expectation µi(t) (and E(Yik) = µi) and variance var(Yik) = Σi.

In the PAD example, Yik(T`) denotes the exercise tolerance (in minutes) for the kth patient

in the ith treatment group (i = 0 for placebo, i = 1 for active treatment) at measurement

time T` (T0 = baseline; T1 = 3 months; T2 = 6 months; T3 = 9 months; T4 = 12 months).

Note that it is more efficient (powerful) to condition on baseline levels when analyzing

treatment effects, and although we advocate such an approach, we do not specifically

incorporate it into our notation. The practical effect of conditioning on baseline levels

would be to reduce the magnitude of the covariance matrix Σi, which could be made

explicit during trial design and/or estimated at each interim analysis (see section 3.3).

We consider a general parameterization of treatment effect obtained by a weighted sum

of the response vector so that the within-subject summary statistic is the weighted sum

of the individual’s response vector. We refer to this statistic as the weighted area under

the response curve (wAUC). Let w′ = (w0, ..., wL) denote weights selected to express

the scientific importance of effects at time points T0, ..., TL, and define the within-subject

summary statistic Xik = w′Yik. The average outcome with treatment i is given by

1 j = 1, ..., J will index interim analyses (section 2.2), so NJ is the maximal sample size.



Group Sequential Trials With Longitudinal Data; Page 5

θ̂i =
∑

k Xik/NJ . We let θ denote the effect of the new treatment relative to control, and

estimate it by θ̂1 − θ̂0. The following specific measures are included in the wAUC.

(i) Clinically relevant timeframe (last value): w′ = (0, .., 0, 1) when the scientific interest

is on the response at TL; that is, treatment effects are measured by

θ = µ1(TL)− µ0(TL).

It is also common to estimate µ1(TL) − µ0(TL) by the change from baseline, which

corresponds to weights w′ = (−1, 0, ..., 0, 1). This parameterization focuses entirely

on the last time point even though outcome measurements are made at earlier times.

In the PAD example, this outcome corresponds to measuring treatment effects by the

difference in improvement in exercise tolerance after 12 months of treatment.

(ii) Rate of change (slope): Measure treatment effect by the difference in the linear time-

trend for the treatment response:

θ = β1 − β0

where βi is the least squares approximation to the first order linear time trend (slope)

in the response to treatment i. The slope statistic corresponds to a weight vector with

`th element:

w` =
T` − T∑

t(Tt − T )2
,

for ` = 0, ..., L. In the PAD example w′ = (−0.8,−0.4, 0, 0.4, 0.8), which corresponds

to the difference in the annual rate of improvement in exercise tolerance between the

two treatment groups.

(iii) Area under the curve (auc): Treatment effects are often parameterized as the area under

the curve (usually standardized by the total measurement time TL). Using a trapezoidal

approximation corresponds to weights: w0 = (T1−T0)/TL, wL = (TL−TL−1)/TL, and

for ` = 1, .., L− 1:

w` = (T`+1 − T`−1)/(2TL).
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The auc is often calculated using the difference from baseline which corresponds to

using all of the above weights except w0 = (T1 + T0− 3TL + TL−1)/(2TL). In the PAD

example using w0 = −1 and w` = 0.25 corresponds to measuring treatment effects by

the average change from baseline over all follow-up measurements.

Note that the wAUC is a function of the follow-up measurement times T1, ..., TL; thus,

inference is referenced to the time range, and choosing a different time range will not

necessarily give the same result.

The distribution of the estimated treatment effect θ̂ follows from the distribution of the

within-subject summary statistic Xik, which has expectation E(Xik) = w′µi and variance

var(Xik) = w′Σiw. For large samples θ̂ is approximately normally distributed:

θ̂ ∼ N (θ, (V1 + V0)/NJ) (1)

where Vi = var(Xik). Thus, the fixed-sample trial with complete data on all participants

can be designed using standard methods based on the above distribution for θ̂. Robustness

to departures from normality in small sample sizes is discussed in section 4.

Notice that in this mean-based inference with balanced data, the treatment effect is

equivalently viewed as a contrast across the population mean outcomes; that is, treatment

comparisons can be based on the weighted sum of the averages at each measurement time

(θ̂i =
∑

t w(t)[
∑

k Yik(t)/NJ ]), or (per Frison and Pocock[6]) as the average of the within-

individual summary measures (θ̂i =
∑

k[
∑

t w(t)Yik(t)]/NJ ). Without missing data these

two approaches are identical, but with missing data naive application of the latter leads to

bias. (Note that this equivalence will not hold in other settings (e.g., logistic regression)

where there is a non-linear link between the mean and explanatory variables.) With large

sample sizes the vector of the average outcome at each of the L time points is multivariate

Normal with expectation µi and variance Σi/NJ , so that θ̂ is distributed as above (eq

1). This alternative formulation only requires an appropriate covariance structure for the

averages at each time point and does not require assumptions about the distribution of
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the outcome within an individual.

Notice also that because the treatment effect is defined according to the particular

choice of weights w, these weights also define the set of µi that will be considered as null

and alternative hypotheses. For example, if statin treatment causes a transient increase

in PWT that disappears by 12-months, then auc weights classify such effects as part of

the alternative hypothesis whereas last-value weights classify the same effect as part of the

null hypothesis. It is therefore essential that the weights reflect the clinical questions.

2.2 Interim Analyses with Summary Statistics

Now suppose that the fixed-sample trial described above will be monitored in J interim

analyses. Let N
(L)
j denote the number of subjects who have completed follow-up at all L

time points at the jth interim analysis in each treatment group. We assume that N
(L)
1 > 0

so that at least one subject has completed follow-up at the time of the first interim analysis.

To define the amount of information (complete and incomplete) at the jth interim analysis

we let N
(`)
j denote the number of subjects with outcome measured at times T1, ..., T` (i.e.,

with exactly ` outcome measurements). For example, in the PAD trial N
(3)
2 would be

20 if at the second interim analysis there were 20 subjects with outcome measured at all

but the final (12-month) time point (section 3.2 provides a complete illustration). At the

jth analysis the total number of subjects with one or more follow-up measurements is

Nj =
∑L

`=1 N
(`)
j . We index the timing of interim analyses by the number of subjects with

complete follow-up N
(L)
j .

It is possible to use standard group sequential designs if interim analyses are restricted

to subjects who have completed follow-up. In this case the interim analyses occur after

collecting 100×N
(L)
j /NJ percent of the total information. Restricting attention to subjects

with complete follow-up ignores the information that might be contained in the other

subjects. It may be possible to increase efficiency by including all follow-up information,

especially if the weights emphasize early effects over late effects.
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To include all information we define Y(`)
ik (` = 1, ..., L) as the outcomes in the N

(`)
j

subjects with exactly ` follow-up measurements; specifically, Y(`)
ik = (Yik(T0), ..., Yik(T`)).

The expectation of Y(`)
ik is the first ` elements of µi which we denote by µi(`) and its variance

is given by the upper ` × `-element submatrix within Σi which we denote by Σi(`). Let

Y
(`)

i·j denote the vector of averages among subjects with exactly ` outcome measurements

at the jth interim analysis. For large sample sizes, Y
(`)

i·j will follow an `-dimensional normal

distribution with mean vector µ
(`)
i and variance matrix Σi(`)/N

(`)
j . The likelihood is:

L =
L∏

`=1

√
N

(`)
j

2π
detΣ−1

i(`) exp

{
−N

(`)
j

2
(Y

(`)

i·j − µ
(`)
i )′Σ−1

i(`)(Y
(`)

i·j − µ
(`)
i )

}
,

which is the same as that given by Jennison and Turnbull [17] or Galbraith and Marsh-

ner[19]. The maximum likelihood estimate of the mean outcome vector at the jth interim

analysis µ̂ij is:

µ̂ij = Vij

L∑

`=1

Σ−1
i(`)Y

(`)

i·j N
(`)
j ,

where Vij is the variance of µ̂ij :

Vij =

[
L∑

`=1

Σ−1
i(`+)N

(`)
j

]−1

.

(Notation: Σ−1
i(`+) denotes Σ−1

i(`) augmented with 0’s to increase the dimension to L×L so

that the above sum is properly defined.) At the jth interim analysis, the treatment effect

θ̂j and its variance are given by:

θ̂j = w′(µ̂1j − µ̂0j)w

var(θ̂j) = w′(V1j + V0j)w.
(2)

Using this variance incorporates the information on subjects who have not yet completed

follow-up into the usual group sequential design framework.

Standard mixed-effects models can be used to obtain µ̂ij and its estimated variance

V̂ij . Such models would use time as a factor variable with an unstructured covariance
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matrix with possible adjustment for covariates (see section 2.4) The average outcome in

treatment i at the jth interim analysis is then given by θ̂ij = w′µ̂ij which has variance

var(θ̂ij) = w′V̂ijw.

2.3 The design of group sequential trials with longitudinal endpoints

To design a group sequential trial requires the test statistic, its distribution, and the

timing of the interim analyses. The test statistic and its distribution are given in the

previous section, and analysis timing is determined by the amount of statistical information

that has been accrued. With a longitudinal endpoint the information is a function of the

covariance, the total number of subjects, and the amount of follow-up on each subject;

thus, the timing of the jth interim analysis is described by Σi and N
(`)
j (for ` = 1, ..., L).

The appendix (section A.1) describes an Splus (or R[23]) function LMEinfo that cal-

culates the timing of interim analyses from Σi and N
(`)
j for ` = 1, ..., L and j = 1, ..., J .

The function returns the timing of the interim analyses in terms of the effective sample

size; i.e., the product of the information and the maximal sample size. The effective sam-

ple size is between the total number of subjects enrolled and the number of subjects who

have completed follow-up, and can be used in standard software packages such as Splus

SeqTrial[24], Pest[25], or EaST[26] to describe interim analysis timing. The use of this

function is illustrated using the PAD example in section 3.

2.4 Flexibility during design implementation

For the purposes of pre-trial planning, the above designs have assumed that follow-up

measurements are taken at the same time points in all subjects. However methods for

implementation of the design must allow for deviations from this pre-trial plan. In fact

it is possible that the distribution of follow-up measurements is nearly continuous even

though the pre-trial plan calls for only a few follow-up measurement times.
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The simplest approach to a non-discrete distribution of follow-up measurements is to

map each measurement to one of the planned times. Mapping a measurement will produce

unbiased estimates as long as the treatment effect is constant within the mapping window

which is more likely if the window is small. Figure 1 illustrates the potential for bias

when the time-trajectory for the treatment effect is non-linear and measurements do not

occur according to the pre-trial schedule. Panel (a) shows the value of three summary

measures (last value, average, and slope) when all subjects are measured according to the

pretrial plan. Panels (b)-(d) show these same summary measures when measurement times

are shifted to early in the window, centered within the window, or shifted to late in the

window. Bias is large if treatment effects are non-linear and measurements are not centered

around the pre-trial time point (e.g., second and third measurement windows in panels b

and d). However, the estimates have little bias if either treatment effects are constant (first

and fourth windows in all panels) or if measurements are centered around the pre-planned

time (all windows in panel c). Figure 1 also shows that although differences from the pre-

trial measurement plan can lead to bias in the overall summary measure (e.g., the average

measure in panels b and d), it is also possible that the bias at one measurement time will

be offset by an opposite bias at another time so that the overall summary measure has

little bias (e.g., the slope summary measure does not differ much across panels).

If it is not reasonable to map measurements to a discrete time point, then it is necessary

to account for possible time trends in the treatment effect. With truly continuous time

measurements it is possible to use growth curve models to estimate a weighted area under

the treatment curve; i.e., θi =
∫

w(t)µi(t)dt. However this approach either requires some

knowledge of the form of the time trend or enough data to deduce an approximate form.

In clinical trials we do not usually know how treatment effects are likely to evolve, and at

interim analyses there is often insufficient data to deduce treatment effect time trends, so

a more robust approach is required.

To minimize bias we consider using a piece-wise linear approximation to the treatment
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time-trend within estimation windows centered on the pre-specified measurement times.

The treatment effects at the discrete times can be estimated from these linear approx-

imations and then used to estimate θ. We define estimation windows which span the

interval from the midpoints between the discrete time points; i.e., the `th window runs

from (T`−1 +T`)/2 to (T` +T`+1)/2), with 0 as the lower limit of the first window and the

maximum time measurement as the upper limit of the Lth window. Within each window

a least-squares linear approximation to the treatment time trend is used to estimate the

outcome at the time point of interest. The appendix (section A.2) describes an Splus/R

function (ThetaEst) that defines the estimation windows, fits a piece-wise linear mixed

effects model, obtains estimates for µi(T`) using this model, and uses these to estimate θ

and its variance. Figure 2 illustrates estimation based on a piece-wise linear approximation

to the non-linear function in figure 1. The biases that were present in figure 1 are reduced

by the piecewise interpolation method. It is of course possible for other types of non-linear

treatment effects or other follow-up measurement patterns to produce bias, and in such

cases other interpolation methods (e.g., splines or lowess) might be useful.

Finally, recall that the use of a discrete follow-up distribution was motivated by the

need for reproducible results if treatment effects are non-linear. The above approaches

use a contrast across µi at the pre-defined times even though the follow-up measurements

are not at these same times. This approach should also be reproducible as long as the

piece-wise linear approximation is adequate.

In addition to deviations from the pre-trial measurement plan, group sequential trials

for longitudinal endpoints must also allow flexibility in the number and timing of the in-

terim analyses. Methods for non-longitudinal endpoints are readily applied to longitudinal

endpoints to account for misspecification of the covariance matrix and for deviations in

the pre-trial distribution of follow-up information (see section 3.3). Furthermore, analysis

of trial results should also be adjusted for the bias introduced by sequential testing. Stan-

dard approaches[27] (and software) for bias adjustment also apply to the treatment effect



Group Sequential Trials With Longitudinal Data; Page 12

estimate θ̂j derived from the longitudinal data.

3. Example

3.1 Fixed-sample Design

Consider a fixed-sample design for a randomized placebo-controlled clinical trial of

statin treatment for PAD as described in the introduction. Suppose that peak walk time

will be measured after 12-months of treatment only (without repeated measurements); i.e.,

θ = µ1(TL)−µ0(TL) and θ̂ = Y 1·(TL)−Y 0·(TL). Based on previous trials in this setting[22]

a reasonable between-subject variance for PWT is 1602, and for design purposes we set

the between-subject variance in subjects assigned to statin treatment at 1802 to reflect a

likely increase in variability due to the intervention. It follows that with 160 subjects per

group var(θ̂) = 1602

160 + 1802

160 = 19.042, so if treatment effects are measured by the 12-month

difference, the study will have 88% power to detect a 60-second difference in PWT (a

reasonable design point based on previous trials).

Addition of a baseline measurement can improve power, and it is common to measure

outcome by the change in PWT Xik = Yik(TL)− Yik(T0) with treatment effect estimated

by θ̂ = X1· −X0·. The variance of this estimate is a function of the correlation between

measurements, which for placebo treatment is approximately ρ = 0.6. If statin treatment

does not affect correlation, then var(θ̂) ≈ 17, so that power is about 94%. Power can be

further increased by analyzing treatment effects conditional on baseline PWT.

Since PAD is a progressive disease it might be scientifically relevant to interpret the

change from baseline as an annual rate of change. With this scientific interpretation and

repeated measurements at times 0 (baseline) 3, 6, 9, and 12-months, the annual rate of

change can be measured by the slope (i.e., w′ = (−0.8,−0.4, 0, 0.4, 0.8)). The power of a

design for the general summary measure θ = w′(µ1−µ0) depends on the nature of the time

trajectory and the covariance matrixes Σi. As commonly happens at the design stage, Σi
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is not known, and we must evaluate operating characteristics under assumed covariance

matrixes. Suppose that the placebo covariance matrix is exchangeable with correlation

0.6 and variance 1602 but that active treatment induces a mean-variance relationship

as described in the appendix (section A.3 and table A1). Obviously, these covariance

matrixes are only pre-trial guesses that would be revised using data at the interim analysis

(see section 3.3).

We explore the power of the design to detect the following alternative hypotheses:

Late effect: µ′1 = (0, 0, 0, 0, 60)

Immediate effect: µ′1 = (0, 60, 60, 60, 60)

Intermediate effect: µ′1 = (0, 0, 0, 60, 60)

Linear effect: µ′1 = (0, 15, 30, 45, 60)

Transient effect: µ′1 = (0, 60, 60, 60, 0)

We assume µ1(0) = 0 and µ′0 = (0, 0, 0, 0, 0) which does not affect study operating char-

acteristics. All but the last of these alternatives show a 60-second improvement in PWT

after 12-months of treatment, and represent non-null effects under the last-value, slope, or

average summary measures. The transient effect is a null effect under either the last-value

or slope summary measures, but is part of the alternative for the average summary mea-

sure. In a fixed sample design the value for θ and the standard error of its estimate are

calculated according to equation (2). Table 1 shows these values and study power under

the various design alternatives µ1 and possible weights w. The power is consistently high

if ‘last-value’ weights are used (except for transient effects), but may be reduced under

other weights.

3.2 Group Sequential Design

Now consider a group sequential design for the PAD trial. With non-longitudinal

endpoints, the timing of interim analyses is usually described by the number of subjects

enrolled at the time of the analysis. For the purposes of pre-trial evaluation of monitoring
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plans we assume that there will be 5 interim analyses after enrolling groups of 80 patients

(40 per treatment arm). The information at each interim analysis is also a function of

the distribution of follow-up measurements (i.e., N
(`)
j for ` = 1, ..., L), and we choose the

following as a reference for evaluation of design properties:

Interim Number of Subjects
Analysis (j) N

(1)
j N

(2)
j N

(3)
j N

(4)
j

1 10 10 10 10
2 10 10 10 50
3 10 10 10 90
4 10 10 10 130
5 0 0 0 160

For example at the second interim analysis 10 subjects (per arm) have completed only

the first follow-up assessment, 10 subjects have completed the first and second follow-up

assessments, 10 subjects have completed the first, second, and third assessments, and 50

subjects have completed all 4 assessments. We exclude any subjects who have been enrolled

(and therefore have a baseline measurement), but who have not yet had the first response

measurement.

The amount of information at each interim analysis for each treatment group is calcu-

lated using the function LMEInfo. Table 2 shows the LMEInfo output for average weights

w′ = c(−1, 0.25, 0.25, 0.25, 0.25) and for a treatment covariance matrix corresponding to

the linear evolution of treatment effects µ1 = c(0, 15, 30, 45, 60). Table 3 shows the effective

sample size and variance under all of the combinations of treatment effects and weights

described above. This effective sample size and variance can be used in standard group

sequential design software packages to evaluate and select stopping boundaries.

Table 4 shows stopping boundaries for group sequential designs using longitudinal out-

comes using a Pocock or O’Brien-Fleming boundary shape[9]. It is apparent that using

the longitudinal data allows smaller critical values than if only complete cases are used.

Notice that the “average” weights incorporate a much greater proportion of the total in-
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formation at the interim analyses compared with either the “last-value” or “slope” weights

(table 3). Although this might be used to motivate the use of average weights, caution is

warranted since these weights can result in a substantial loss of power if treatment effects

evolve slowly (table 1). In the absence of a strong scientific motivation for using one of the

three weighting schemes, we would be inclined to use “last-value” weights because they

maintain power and still allow a reasonable increase in efficiency at the interim analyses.

3.3 Implementation

Suppose that the PAD trial is designed using the average statistic (w′ =

(−1, 0.25, 0.25, 0.25, 0.25)) and the corresponding O’Brien-Fleming stopping rule (table

4). Suppose that the first interim analysis deviates from the timing of the pre-trial plan by

occurring when 30 subjects had been followed for 12 months, 20 subjects for 9 months, 15

for 6 months, and 20 for 3 months. To illustrate issues in implementation, data were sim-

ulated using a covariance structure that differed from the pre-trial assumptions described

above and with a non-discrete measurement distribution using piece-wise linear interpo-

lation to estimate θ. The data frame containing measurements for these 85 subjects was

then analyzed using ThetaEst giving θ̂ = 63.1 with variance = 329.9.

The effect of the above deviations from the pre-trial plan is that the first interim analy-

sis is occurring at a different point in information-time. The interim analysis could proceed

by ignoring these differences and using the pre-trial stopping rule. The actual operating

characteristics with this approach do not differ dramatically from the pre-trial character-

istics as long as the deviations are not major[28]. Alternatively, the stopping rule can

be recalculated using the observed proportion of total information. If the trial were to

continue until completion, then the variance of θ̂ can be estimated by w′(Σ̂0 + Σ̂1)w/160

where Σ̂i are the observed covariance matrixes calculated by ThetaEst. In the simulated

example w′(Σ̂0 + Σ̂1)w/160 = 81.69; thus, 100 × 81.69/329.9 = 25% of the total infor-

mation has been accrued. A recalculated stopping rule can be obtained by interpolating



Group Sequential Trials With Longitudinal Data; Page 16

between the pre-trial rules, by using an error-spending function[10] that approximates the

selected OBF design, or by recalculating the OBF stopping rule using the actual informa-

tion at the first analysis[29]. Suppose we choose to interpolate; 25% of total information

corresponds to an effective sample size of 40 per group which is 25% of the distance be-

tween the effective sample sizes of 29 and 73 that represent the first and second analyses

in the pre-trial plan (table 4). Interpolating between the corresponding stopping rules

implies that the trial should be stopped for lack of efficacy if θ̂ < −89.4 and for efficacy if

θ̂ > 155.9. Since θ̂ = 63.1 the trial would not be stopped. If a termination recommendation

were warranted, then the estimated effect θ̂ should be adjusted for the bias due to sequen-

tial testing using the same methods that are used for non-longitudinal endpoints[27]. As

in any group sequential design, the revised stopping rule and analysis timing would require

revision of future stopping rules in order to maintain operating characteristics[29].

4. Discussion

The methods and software described in this paper allow the design and implementation

of group sequential monitoring plans with longitudinal endpoints. We have based these

methods on a population-level contrast across treatment outcomes at discrete measurement

times which we interpret as a general weighting of the area under the response curve. We

use this framework in order to assure generalizability in trial results even when the time

trajectory for treatment effects is non-linear. This approach will be less efficient than

using continuous-time (growth curve) mixed-effects models if those models are structured

around the true time trajectory, however it will be not be biased when the time trajectory

is misspecified.

When outcomes are not measured on a regular follow-up schedule our approach is to

use the data to estimate treatment effects at pre-defined reference time points which in

turn estimate the wAUC. It is also possible to define a continuous weight function and

use a non-parametric mixed-effects smoothing function[30] to estimate the weighted area
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under the continuous response curve. In such situations study generalizability must still

be conditional on the length of the follow-up interval.

We have considered the problem of conducting interim analyses when at least one

subject has completed the study (i.e., has a measurement at time TL). It is possible

that early interim analyses will be necessary before observing any outcome at time TL.

For example, in a surgery trial it may be necessary to weigh early morbidity against the

potential for later benefit when there are no data to estimate that benefit. Although the

statistical problems with extrapolating beyond the range of the data are well known, it may

still be necessary to make interim decisions in such situations. Similarly, the use of mixed-

effects models with very small sample sizes (e.g., when only a few subjects have complete

follow-up) can give inaccurate inference, yet interim decisions are still required. Methods

that allow interim decision making when there is little or no information at longer-term

follow-up times are subjects of current research.

We note that if there are non-constant treatment effects, then an analysis using re-

peated measurements can in fact have less power than an analysis using just the final

measurement (table 1). Although this might argue against using repeated measurements

in a fixed-sample trial, these early measurements may be important in a group sequential

trial because at interim analyses they can be used to predict later treatment effects.

The focus of this work is on trials with continuous outcome measurements. Similar is-

sues exist in trials with survival endpoints in the presence of non-proportional hazards[31].

These issues also affect interim analyses in trials with Poisson outcomes or recurrent binary

endpoints. Regardless of outcome type, the objective should be to maintain trial repro-

ducibility and generalizability when the nature of the time trajectory of treatment effects is

unknown. The approach of this paper is to select the distribution of outcome measurement

times and direct estimation at a scientifically meaningful contrast across those pre-defined

times. This basic approach can be applied to any type of outcome.
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Table 1: Values for θ, the standard error of θ̂, and power (β) in a fixed-sample trial under
various weightings and values for the true treatment effect µ1.

Weighting (w)
Last Value auc Slope

µ1 θ SE(θ̂) β θ SE(θ̂) β θ SE(θ̂) β

(0, 0, 0, 0, 60) 60.0 17.3 0.93 15.0 12.8 0.22 48.0 15.3 0.88
(0, 60, 60, 60, 60) 60.0 17.3 0.93 60.0 14.3 0.99 48.0 15.3 0.88
(0, 0, 0, 60, 60) 60.0 17.3 0.93 30.0 13.1 0.63 72.0 16.3 0.99

(0, 15, 30, 45, 60) 60.0 17.3 0.93 37.5 13.3 0.81 60.0 15.8 0.97
(0, 60, 60, 60, 0) 0.0 16.0 0.025 45.0 13.6 0.91 0.0 14.3 0.025
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Table 2: Comparing the standard error of θ̂ and information growth for analyses
based on all follow-up measurements versus analyses based only on complete cases.
µ′1 = (0, 15, 30, 45, 60) and w′ = (−1, 0.25, 0.25, 0.25, 0.25).

All Follow-up Data Complete Cases
Interim Effective Actual
Analysis SE(θ̂) Sample Size1 SE(θ̂) Sample Size2

1 30.83 29.70 53.14 10
2 19.68 72.92 23.77 50
3 15.78 113.47 17.71 90
4 13.56 153.70 14.74 130
5 13.29 160.00 13.29 160

1 Information at the interim analyses when all data are used at the interim analysis.
2 Number of subjects who have completed 12-months of follow-up.
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Table 3: Effective sample size (per group) at each interim analysis under various weight-
ings and several possible treatment effects.

Interim Analysis
µ′1 1 2 3 4 5

Complete cases only:
(All µ1) 10.0 50.0 90.0 130.0 160

Including all follow-up information:

w′ = (−1, 0, 0, 0, 1)
(0, 0, 0, 0, 60) 13.2 56.6 97.5 138.0 160
(0, 60, 60, 60, 60) 15.1 59.7 100.8 141.4 160
(0, 0, 0, 60, 60) 14.0 57.5 98.4 138.9 160
(0, 15, 30, 45, 60) 14.3 58.3 99.3 139.8 160
(0, 60, 60, 60, 0) 13.4 57.1 98.1 138.5 160

w′ = (−1, 0.25, 0.25, 0.25, 0.25)
(0, 0, 0, 0, 60) 29.1 72.8 113.4 153.6 160
(0, 60, 60, 60, 60) 31.3 74.2 114.7 154.9 160
(0, 0, 0, 60, 60) 28.9 72.2 112.8 153.0 160
(0, 15, 30, 45, 60) 29.7 72.9 113.5 153.7 160
(0, 60, 60, 60, 0) 30.8 74.0 114.5 154.7 160

w′ = (−0.8,−0.4, 0, 0.4, 0.8)
(0, 0, 0, 0, 60) 13.8 56.5 97.1 137.4 160
(0, 60, 60, 60, 60) 15.3 58.6 99.3 139.7 160
(0, 0, 0, 60, 60) 15.0 57.6 98.2 138.4 160
(0, 15, 30, 45, 60) 15.1 58.0 98.7 139.0 160
(0, 60, 60, 60, 0) 14.2 57.1 97.8 138.1 160
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Table 4: Group sequential stopping boundaries.

Interim Effective Lower Upper
Analysis Sample Size Boundary Boundary

O’Brien-Fleming boundary shape:
Complete cases only

1 10 -487.2 556.8
2 50 -41.8 111.4
3 90 7.7 61.9
4 130 26.8 42.8
5 160 34.8 34.8

All data and w′ = (−1, 0, 0, 0, 1)
1 14 -328.8 398.6
2 58 -26.5 96.2
3 99 13.4 56.4
4 139 29.6 40.1
5 160 34.9 34.9

All data and w′ = (−1, 0.25, 0.25, 0.25, 0.25)
1 29 -117.1 183.6
2 73 -6.4 72.9
3 113 19.4 47.1
4 154 32.0 34.6
5 160 33.3 33.3

Pocock boundary shape:
Complete cases only

1 10 -83.8 167.5
2 50 8.8 74.9
3 90 27.9 55.8
4 130 37.3 46.5
5 160 41.9 41.9

All data and w′ = (−1, 0, 0, 0, 1)
1 14 -57.3 140.4
2 58 14.1 69.0
3 99 30.3 52.8
4 139 38.5 44.6
5 160 41.5 41.5

All data and w′ = (−1, 0.25, 0.25, 0.25, 0.25)
1 29 -13.6 91.4
2 73 20.2 57.6
3 113 31.5 46.3
4 154 38.1 39.6
5 160 38.9 38.9
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Figure Legends

Figure 1: Estimation by mapping each measurement to its pre-trial time point when
treatment effects are non-linear. Dotted vertical lines denote mapping window, solid lines
at bottom of each panel denote the distribution of measurement times, circle denotes true
effect, X denotes the estimate obtained by mapping.

Figure 2: Estimation using a piece-wise linear approximation (lines within each mapping
window) to the non-linear function. Plotting symbols are the same as described for Figure
1.
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Appendix: Software 1

A.1 Information at interim analyses (LMEInfo)

Description: Calculates the effective sample size at the interim analyses when including
subjects with incomplete follow-up in a trial with longitudinal outcome measurements.

LMEInfo <- function(Wt,V0,V1,N=N) {
L <- nrow(V0)
J <- nrow(N)
rslt <- NULL
for (j in 1:J) {

Nj <- matrix(NA,nc=L,nr=L)
V0inv.j <- matrix(0,nc=L,nr=L)
V1inv.j <- matrix(0,nc=L,nr=L)
for (d in 1:L) {

V0inv.j[1:d,1:d] <- V0inv.j[1:d,1:d] +
solve(V0[1:d,1:d])*N[j,d]

V1inv.j[1:d,1:d] <- V1inv.j[1:d,1:d] +
solve(V1[1:d,1:d])*N[j,d]

}
V0j <- solve(V0inv.j)
V1j <- solve(V1inv.j)
tmp <- t(Wt) %*% (V0j + V1j) %*% Wt
rslt <- c(rslt,sqrt(tmp))
}
tmp <- sqrt(t(Wt) %*% (V0 + V1) %*% Wt)/sqrt(N[,L])
rslt <- cbind(SElme=rslt,

Info.lme=(1/rslt)^2,
SampleSize.lme=max(N)*(rslt[J]/rslt)^2,
SEcompl=tmp, Info.compl = 1/tmp^2,
SampleSize.compl=N[,L])

rslt
}

Arguments:
Wt: Weights used to define wAUC.
V0: Covariance matrix for control group.
V1: Covariance matrix for treatment group.
N: Matrix of dimension J × (L + 1) giving N

(`)
j where rows represent interim analyses

(j = 1, ..., J) and columns represent outcome measurement time (with the first
column representing baseline).

Value: Matrix with J rows (one for each interim analysis) and 4 columns:
Column 1: Standard error of θ̂ at each interim analysis when all data are used.

1 Functions can be downloaded from http://pmb.uchsc.edu/kittelson
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Column 2: Statistical information at each interim analysis when all data are used.
Column 3: Effective sample size at each interim analysis when all data are used.
Column 4: Standard error of θ̂ when interim analyses are based on complete cases only.
Column 5: Effective sample size when interim analyses are based on complete cases only.
Column 6: Statistical information when interim analyses are based on complete cases

only.
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A.2 Estimation of treatment effects (ThetaEst)

Description: Estimation of θ, its standard error, and the covariance matrixes Σ0 and Σ1

using data at an interim analysis.

ThetaEst <- function(dta,T.Infer,Wt) {
L <- length(T.Infer)
breakpts <- (T.Infer[-1] + T.Infer[-L])/2
breakpts <- c(0,breakpts,max(dta$T.meas)*1.00001)
rslt <- NULL
indx <- 0
for (g in unique(dta$group)) {

indx <- indx + 1
grp <- dta$group == g
grpdta <- dta[grp,]
PieceLin.B0 <- matrix(0,nr=nrow(grpdta),nc=L)
PieceLin.B1 <- matrix(0,nr=nrow(grpdta),nc=L)
LinInterp <- rep(T,L)
for (i in 1:L) {

sub <- grpdta$T.meas >= breakpts[i] &
grpdta$T.meas < breakpts[i+1]

PieceLin.B0[sub,i] <- 1
PieceLin.B1[sub,i] <- grpdta$T.meas[sub]
if (length(unique(grpdta$T.meas[sub])) == 1) LinInterp[i] <- F
}

X <- cbind(PieceLin.B0,PieceLin.B1[,LinInterp],grpdta$CoVars)
y <- grpdta$y
id <- grpdta$id
REmat <- X[,1:L]
zz <- lme(fixed = y ~ -1 + X,

random= ~ -1 + REmat | id,method="ML")
TimeCntrst <- cbind(diag(rep(1,L)),diag(T.Infer))
TimeCntrst <- TimeCntrst[,c(rep(T,L),LinInterp)]
dims <- length(TimeCntrst)
Theta <- t(Wt )%*% (TimeCntrst %*% zz$coef$fix[1:dims])
Var.Theta <- zz$varFix[1:dims,1:dims]
Var.Theta <- TimeCntrst %*% Var.Theta %*% t(TimeCntrst)
Var.Theta <- t(Wt) %*% Var.Theta %*% Wt
Sigma <- (as.matrix(zz$model$re$id) + diag(rep(1,L)))*zz$sigma^2
tmp <- list(Theta=c(Theta, Var.Theta),Sigma=Sigma)
rslt[[indx]] <- tmp

}
names(rslt) <- paste("Group",unique(dta$group),sep="")
rslt

}
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Arguments:

dta: Data frame of results at the interim analysis with elements:
$id: Factor variable with individual subject id number.

$group: 0-1 indicator for treatment group.
$y: Outcome measurement.

$T.meas: Time at which outcome was measured.
$CoVar: Optional matrix of covariates that are included in the mixed-effects

model. In particular, baseline measurements can be included for in-
creased precision.

T.Infer: Vector of discrete measurement times used to calculate θ (in text: T0, ..., TL)
Wt: Vector of weights (length L) used to calculate θ.

Value:
List of lists (one for each treatment group). Each of the treatment group lists has two
elements:

$Theta: Vector with first element θ̂ and second element var(θ̂).
$Sigma: Estimated covariance matrix for the treatment group.

At an interim analysis, the variance is used to estimate the current information in the
trial. The magnitude of θ̂ is compared with the design stopping rules to determine
if termination is warranted. The above mixed-effects models will provide unbiased
estimates of θ using all available data as long as any missing follow-up measurements
are missing at random or missing completely at random.

A.3 Multiplicative mean-variance relationship

Many treatments inflate the variance. The following Splus/R simulation uses a random
multiplicative offset (following a lognormal distribution) to get a covariance matrix for use
as the alternative variance V1 in the function LMEInfo. The argument sd = 0.82 controls
the magnitude of the variance, mu denotes the vector of means corresponding to µ1, and
Sigma0 denotes the control-group covariance matrix Σ0.

Ran.offset <- rlnorm(100000,mean=0,sd=0.82)
Ran.offset <- matrix(rep(Ran.offset,length(mu)),ncol=length(mu))
Ran.means <- Ran.offset*mu
tmp <- rmvnorm(100000,Ran.means,cov = Sigma0)
rslt <- cov(tmp)
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The PAD designs of section 3 use covariance matrixes from the above simulations with

Σ0 = 160×




1.0 0.6 0.6 0.6 0.6
0.6 1.0 0.6 0.6 0.6
0.6 0.6 1.0 0.6 0.6
0.6 0.6 0.6 1.0 0.6
0.6 0.6 0.6 0.6 1.0


 ,

and under means corresponding to late, immediate, intermediate, linear, and transient
effects as shown below (table A1).

Table A1: Covariance matrices for the active treatment group (Σ1 = σ1σ
′
1 ×C1).

µ1 σ′1 C1

(0, 0, 0, 0, 60) (160, 160, 160, 160, 180)




1.00 0.53 0.53 0.53 0.60
0.53 1.00 0.68 0.68 0.53
0.53 0.68 1.00 0.68 0.53
0.53 0.68 0.68 1.00 0.53
0.60 0.53 0.53 0.53 1.00




(0, 60, 60, 60, 60) (160, 180, 180, 180, 180)




1.00 0.53 0.53 0.53 0.60
0.53 1.00 0.68 0.68 0.53
0.53 0.68 1.00 0.68 0.53
0.53 0.68 0.68 1.00 0.53
0.60 0.53 0.53 0.53 1.00




(0, 0, 0, 60, 60) (160, 160, 160, 180, 180)




1.00 0.53 0.53 0.53 0.60
0.53 1.00 0.68 0.68 0.53
0.53 0.68 1.00 0.68 0.53
0.53 0.68 0.68 1.00 0.53
0.60 0.53 0.53 0.53 1.00




(0, 15, 30, 45, 60) (160, 161, 165, 172, 180)




1.00 0.53 0.53 0.53 0.60
0.53 1.00 0.68 0.68 0.53
0.53 0.68 1.00 0.68 0.53
0.53 0.68 0.68 1.00 0.53
0.60 0.53 0.53 0.53 1.00




(0, 60, 60, 60, 0) (160, 180, 180, 180, 160)




1.00 0.53 0.53 0.53 0.60
0.53 1.00 0.68 0.68 0.53
0.53 0.68 1.00 0.68 0.53
0.53 0.68 0.68 1.00 0.53
0.60 0.53 0.53 0.53 1.00





