Stat 513

Emerson, Winter 04
Midterm #1 Key
February 12, 2004

Instructions:

This exam is closed book, closed notes. No use of calculators is permitted.

Write answers to the following questions on the front side of separate sheets
of paper, starting each problem at the top of a new page. Be sure to write
your name on the top of each page.

In order to receive full credit, you must make clear how you derived the
answers to the problems.

If any of the problems seem unsolvable with the information provided,
clearly state reasonable assumptions that would allow solution, and use
those assumptions to solve the problem. If no such reasonable assumptions
are obvious, simply state that and proceed to other problems.

You are allowed 50 minutes for this exam. At the end of the in-class exam,
you may complete or correct the solution to any problem as a take-home
exam subject to the conditions specified on the last page of the exam.

Write out and sign the following pledge for the in-class exam:

“On my honor, I have neither given nor received any unauthorized aid
on this in-class examination.”

If for any reason you can not honestly sign the pledge, please discuss this
with me on Wednesday.

In addition to the theorems covered in class, you may use the following facts
without proof:

— If X ~ N(u,0?) then

1.

E[X3] = p3 4 3puc?

E[X*] = p* + 6p*0? 4 30*
(30 points) Let X1, Xo, ..., X, be a sequence of i.i.d. uniform random variables having
distribution X; ~ U(0,0) with unknown 6 € © = (0, c0).

a. Using the definition of sufficiency, show that the maximum likelihood estimator
0 = X(,) (the sample maximum) is sufficient for 6.



Ans:
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To show sufficiency for statistic § = X (n), We want to show that the distribution
of X | 6=tis independent of 6. The conditional density is

. Z,0
f16(T]0 = 1) = L())-

Now the joint density of Xiz Fand 0 =tis merely the joint density of the X;’s
if the sample maximum is # = ¢, and zero otherwise:

. 1
fz4(%, <H 51[0<x <9> 1y, =1
1
= gn <H 1[o<xist]> o<y <01 Loy =t)
=1

The density for =X (n) 18 easily found from the cumulative distribution function:
Fé(t) = PT(X(n)St)

= HPT(Xlgt)
i=1
t n
= (5) Lio<t<o) + Lig<t<oo]

d
—Fy(t
dt 9()
tn—l

f3(t) =

=n
Hence, the conditional density is

o (HL 1[o<xigt]) Lz =t o<i<0)

tn—1
n g lo<t<o)

f)?|é(f|é =t)=

o
ntn—1 1 [ (n)=t]>

which is independent of . (Note that because we are conditioning on an observed
6 =t, we know that 0 <t < 6.)

. What does the Cramér-Rao Theorem say about the variance of 67
Ans:

Because the distribution of the X;’s lack common support across all values of 6,
this is not a regular problem, and the Cramér-Rao Theorem provides no guidance
about the variance of any estimator.
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c. Let 6 be an unbiased estimator of  based on the MLE. Find 6 and compare its
mean squared error to the mean squared error of 6.

Ans: We can find the expected value of 6 by integrating the density

oo

E[f] :/ tfy(t)dt

— 00

0 n
:/ nt—ndt
o 0

6 = (n+ 1)8/n would be unbiased for 6.
) = (n+ 1)2Var(@)/n?. Since MSE(T) =

From this, we quickly deduce tha

t
Furthermore, we can see that Var(6
Var(T) + bias?(T), we know that

- (n+1)

MSE@#) = 3 Var(0)
and )
MSE(#) = Var(f) + me?

Now we find Var(f) using the usual approach: Var(d) = E[6?] — E2[0] with

B = [ pd

— 00

:/ ntn-ﬁ- )dt
0 o
_ " p2
n42
2
2y o T 2
Var(@)—n+2 (n+1)29
_ n 2
2+ 17
This then dictates that
~ 1
MSE(0) = ———6°
SE(6) n(n+2)0
MSE(é)—( z P )92— 2 62
S\ +2)(n+1)2 (n+1)2)  (n+2)(n+1)

Taking the ratio B
MSE@) n+1

MSE®@®)  2n’
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we find that # has lower MSE whenever n > 1 (when n = 1, the MSE for the two
estimators are equal).

2. (20 points) Let X1, Xo,...,X,, be a sequence of i.i.d. normal random variables having
distribution X; ~ A (u, 1) with unknown p € (—o0,00). Suppose we wish to estimate
0 = 2.

a.

Ans:

Ans:

Find the Cramér-Rao lower bound for the variance of an unbiased estimator of 6.

We want to estimate g(u) = p?. Because o2 = 1, the likelihood for y is

L(p| X) = f¢(@p) = <\/(12W)> exp (_Zi_l();'i—u) )

yielding log likelihood, score function, and Fisher’s information of

Z?:1(Xi - N)Q
2

L{n) = — log(2m) -

U) = %am =Y (X p)

1) = ~E (5.0)) =n

The Cramér-Rao lower bound then dictates that for this regular problem of
estimating g(u) = p? (so ¢’(p) = 2p), an estimator T which is unbiased (so
b(T,g(p)) =0 and b/'(T,g(r)) = 0) must have

9 (1) + V' (T, g(w)]* _ 4p?

Var(T) > (1) =

Show that the maximum likelihood estimator 6 is biased for f, and compare the
mean squared error of that estimator to the Cramér-Rao lower bound for the MSE
of a similarly biased estimator. Does the MLE meet that lower bound in small
samples? How does the MSE of the MLE behave asymptotically with respect to
that lower bound?

We find the MLE /i for p from the equation U(j2) = 0, which yields 4 = X. By
the invariance of maximum likelihood estimates, the MLE of § = g(u) will be

0=g(p) = X Due to the normality of the X;’s, we know that X ~ N (u,1/n),
and we can then find the bias of 8 as

Elf] = E[X’] = Var(X) + E2[X] = % + u2

So 0 is biased with bias function b(6,0) = 1/n.
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We are asked to find the Cramér-Rao lower bound for the MSE of an estimator
with similar bias. From the formula given in the class notes, the Cramér-Rao
lower bound dictates that

EAER I N w1
g +

MSE(f) > T Rt

We can find the actual MSE for 6 as

A~

MSE(®) = Var(0) + [b(0, g(u))]>.

Because X is normally distributed, we can use the formulas for the fourth non-
central moment of a normal random variable (as given in the instructions to the
exam) to find

Var() = Var(X) = E[X | — E[X]

B 4p2 2

o on n?

A 4y 3
MSE(#) = % + 5

Clearly, 6 does not meet the Cramér-Rao lower bound for MSE of an estimator
having bias 1/n.

Of course, as a MLE in a regular problem, we know that the 6 is consistent for
f, and its asymptotic variance will correspond to that of an unbiased estimator
with variance achieving the Cramér-Rao lower bound. This could also be seen
by looking at the limit of the ratio of the Cramér-Rao lower bound for the MSE
and the actual MSE:
CRLB n .
im ———— m e = 1.

3
m|’_‘ |

Note that it is not sufficient to just argue that the MSE and the CRLB each
converge to 0 as n — 00, because they might do so at different rates.

3. (75 points) Let X7, X5,... be a sequence of i.i.d. random variables having density
function

fx(x)=(0+ 1)x91[0<1’<1]
for some unknown 6 > —1.

a. Find a sufficient statistic for §. (More credit will be given according to the extent
of data reduction in the sufficient statistic.)
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Ans: T use the Neyman factorization theorem:

[z (Z:0) = H (0 + D)af 1<z, <))

0 + ]- <H xl) 1[0<1’(1) 1[I(n)<1]
i=1

so T'(X ) [T, X; is a sufficient statistic. Note that we can show that this is a
minimal sufficient statistic, because if [, z; = [[/—, i,

[x(Z:0) _ Lo<a) Lz, <1]
f)}‘ (g, 0) 1[0<y(1)] 1[y(n)<1]
is independent of #. (Equivalent minimal sufficient statistics could be based on

the geometric mean or the log of the geometric mean (the arithmetic mean of log
transformed data).)

b. Find the Cramér-Rao lower bound for the variance of an unbiased estimator of 6.
Ans: In a regular problem, the Cramér-Rao lower bound for an estimator T'(X) of ¢(6)

having bias function b(0) is

(g'(6) +V'(6))*

Var(T(X)) > 0

As we are considering unbiased estimates of g(0) =6, ¢’(f) = 1 and b/'(0) = 0. As
we are considering a sampling situation in which we have i.i.d. random variables,
I(#) = nl;(#). Now in this regular problem

Li(0]1X:) = (6 + 1) X7
Li(0) = log(Li(0)) =log(6 + 1) + #log(X)
0 1
%ﬁi(e) “ar1 log(X;)
L(9)=-E (aaeu (9)) - (9+11)2

so the Cramér-Rao lower bound for the variance of an unbiased estimator of 6 is

(g'(0) +0'(9))> _ (0+1)°
1(6) n

U;(0) =

Var(T(X)) >

c. For what functions of 8§ does an unbiased estimator exist which meets the Cramér-
Rao lower bound?



Ans:

Ans
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We know that a best regular unbiased estimator (BRUE) exists only for linear
transformations of g(#) when the score function can be written as

Uo) = A@) (T(X) - 9(6)) -

From part b, we know the score function is

ue) =3 (9%1 + log<Xi>) = —n <% S log (i) - ﬁ) ,

1=1

—

so T(X) = —>." log(X;)/n is the BRUE for g(d) = 1/(6 + 1), and linear

transformations of T'(X) will be BRUE for linear transformations of g(#). No
other BRUE will exist for this problem.

Compute the efficiency of the sample mean as an estimator of the expected value
of X.

We first find the mean and variance of X; by the usual approach

%) 1 L
E[XZ] :/ aij(aj’Q) dx :/0 (9+ 1)$9+1 dr = [eix9+2:| _ ei

oo 0+ 2 o O0+2
o) 1
0+1 L 6+1
[X7] /_Ooas fx (z;0) dx 0(9+ Yz’ dx [9+3x }0 713

_0+1 (041)? 6+1

T 0+3 (0422 (0+3)(0+2)2

Var(X;) = E[X?] — E*[X}]

Now, the sample mean is always an unbiased estimator of the population mean,
and its mean and variance are thus

><|

0+1 0+1
" 0+2" nO+3)(0+2)2)"
To find its efficiency, we merely compare its variance to the Cramér-Rao lower

bound for an unbiased estimator of g(6) = (0 +1)/(6 + 2). We thus have ¢'(f) =
1/(6 +2)?, and Cramér-Rao lower bound

(g'(0) +¥'(0))* _ (0+1)°
1(6) n(6 +2)%

The efficiency of the sample mean is thus

((9+1)2)( 0+1 )‘1_(0+1)(9+3)
n(0+2)* ) \ n(0+ 3)(0 + 2)2 o (0+2)2

By noting that (§ +1)(0 +3) = (0 +2—1)(# +2+1) = (0 +2)? — 1, we see that
the sample mean is always inefficient, though for large 6, it is nearly efficient.



c.

Ans:
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Find the asymptotic distribution of the maximum likelihood estimate of the ex-
pected value of X.

The really fast way to solve this problem is to note that in regular problems,
MLE’s asymptotically are consistent and attain the Cramér-Rao lower bound.
By the invariance property of maximum likelihood estimation, the MLE of g(0) =
(0+1)/(0+2) is g(0) = (§+1)/(0 + 2). Thus we know that

0 +1)/(0+2)~N ((9 +1)/(6 + 2), %) .

This is of course the answer that you would get by using the delta method with the
asymptotic distribution of the MLE §~N (6, I=1(6)). From the results pesented
in parts b and ¢, we easily see that § = —(14n/> log(X;)), though this was not
at all necessary for solving this problem.

4. (45 points) Let X7, Xo,... be a sequence of i.i.d. random variables having density
function

fx(x) = (22 —1)0 + 1)1[0<1’<1]

for some unknown 6 € (—1,1).

a. Find a sufficient statistic for . (More credit will be given according to the extent

Ans:

Ans:

of data reduction in the sufficient statistic.)

The joint density of the data is

n

F2(@0) = [(22: — 10 + D1y, <ay,

1=1

which can not be factored further into functions of any statistic beyond the or-
der statistics. We see that the minimal sufficient statistic is indeed the order
statistics (X (1), X(2), ..., X(n)) by examining when the ratio f¢(Z;0)/f¢(¥;0) is
independent of 6:

f)?(fv 0) H?:l((le - 1)0+ 1)1[0<1’1<1]

fz (7;0) B H?:1((2?Ji —1)0 + 1)1[0<yi<1] ’

which happens only when & and ¥ are permutations of each other, i.e., when they
have the same order statistics.

For what functions of § does an unbiased estimator exist which meets the Cramér-
Rao lower bound?

We examine whether the score function can be put in the desired form for a
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BRUE to exist for some function of 0:

L(01X:) = (J [ (22 — )8 + D1ps, <1y

L(0) = log(L(9)) = Zlog((%si —1)6+1)
0 - 2z — 1
Uo) = 5g£0) = Zl (22; — 1)0 + 1

There is no way to factor the score function into the form
u(e) = A©) (T(X) - 9(0))
for any g(6).

c. Derive expressions for the asymptotic distribution of the maximum likelihood
estimate of the expected value of X.

Ans: We first find the mean by the usual approach

1 - .
E[Xi] :/0 z((2z —1)0 4+ 1)dx = [§9x3+79332 = 025_3

Thus we want to estimate g(#) = (6 +3)/6. By the invariance of MLEs, the MLE
of g(#) will be g(#) = (6 + 3)/6. The maximum likelihood estimate € of € is that

~

value which satisfies U(0) = 0, so it is specified by the implicit function

n

(2z; —1)0 + 1

1=1

which has no closed form solution as an explicit function. The asymptotic distri-
bution of 6 in this regular problem will be §~N (6, 171()), where I() = nI;(6)
in this problem based on i.i.d. data.

L(0)=—E (%ui(e))

-5 (@ ; )

_ [t (e—1p B Mt (e —1)?
_/0 ((2x—1)9+1)2((2‘” 1)f +1) de _/0 (2z —1)f+1) dr

This integral can be solved in closed form by making the substitution u = (2x —
1)0 + 1 to obtain

1 [ (u—1)2 1 146 1
I = — = — l _ _—
1) = 53 /1_9 w =g los (1 - 9) I
Then, using the delta method, Mann-Wald, or Slutsky’s, we find

G+3). . (60+3) 1
6 NN( 6 ’36n11(9))'




