

- 1. Let  $X_i \stackrel{iid}{\sim} \mathcal{U}(0, \theta)$  for  $i = 1, \dots, n$ .

(a) Show that  $X_{(n)}/\theta$  is a pivotal quantity.

Let  $Y_i = X_i/\theta$ . We know (previous hws) that  $Y_i \sim U(0, 1)$ . Then  $X_{(n)}/\theta = Y_{(n)}$  has a distribution independent of  $\theta$ , and thus it is a pivotal quantity.

(b) Derive a formula for a  $100(1 - \alpha)\%$  confidence interval for  $\theta$ .

$$\begin{aligned} P_\theta(\theta \in [aX_{(n)}, bX_{(n)}]) &= P_\theta(aX_{(n)} \leq \theta \leq bX_{(n)}) \\ &= P_\theta(1/b \leq Y_{(n)} \leq 1/a) \\ &= \int_{1/b}^{1/a} nt^{n-1} dt = (1/a)^n - (1/b)^n \end{aligned}$$

So a  $100(1 - \alpha)\%$  CI would be  $[aX_{(n)}, bX_{(n)}]$  that satisfies  $a, b > 0$  and  $(1/a)^n - (1/b)^n = 1 - \alpha$ . Note: Practically, it wouldn't make sense to have a lower and upper bound in this case since it is impossible to have the maximum value be greater than  $\theta$ . Thus, a one-sided confidence interval would make more sense, but a two sided one is presented for an example.

(c) Find the expected width of your confidence interval for  $\theta$ .

$$\begin{aligned} E_\theta(bX_{(n)} - aX_{(n)}) &= (b - a)E_\theta(X_{(n)}) \\ &= (b - a)(\frac{n-1}{n})\theta \end{aligned}$$

- 2. Let  $X_i \stackrel{iid}{\sim} \mathcal{B}(1, p)$  for  $i = 1, \dots, n$ . Suppose we observe  $\sum x_i = 0$ . Find a 95% upper confidence bound for  $p$ . Show that for large  $n$ , this bound is approximately  $3/n$ .

$$\begin{aligned} P_{p_U}(\sum X_i \leq 0) &= (1 - p_U)^n = 0.05 \\ \Rightarrow p_U &= 1 - 0.05^{1/n} \end{aligned}$$

For large  $n$ , assume  $\sum X_i \sim N(np, npq)$

$$P_{p_U}(\sum X_i \leq 0) = P_{p_U}\left(\frac{\sum X_i - np}{(npq)^{1/2}} \leq -(np/q)^{1/2}\right)$$

$$\begin{aligned}
(np/q)^{1/2} &\approx 1.64 \\
p &\approx 2.7(1-p)/n \\
p &\approx 2.7/n(1 - 2.7/n) \\
p &\approx 2.7/(n - 2.7) \\
p &\approx 3/n \text{ As } n \text{ gets large}
\end{aligned}$$

Something else one might consider is using a Taylor's series expansion after taking the  $\ln$  of both sides since  $\ln(1 - p) \approx -p$  and  $\ln(0.05) = -2.9975$ .

- 3. Suppose  $X_i, i = 1, \dots, n$  are independent and identically distributed random variables which, conditional upon a parameter  $\theta > 0$ , have the exponential distribution  $\mathcal{E}(\theta)$  with density  $f(x) = \theta e^{-\theta x}, x > 0$ , and 0 otherwise.

Consider a prior distribution for  $\theta$  according to the gamma distribution  $\theta \sim \Gamma(\alpha, \beta)$  with density  $b(\theta) = \beta^\alpha \theta^{\alpha-1} e^{-\beta\theta} / \Gamma(\alpha)$  and mean  $\alpha/\beta$

- (a) Show that the above prior distribution is the conjugate prior for this problem.  
The prior will be conjugate if the resulting distribution is also gamma.

$$\begin{aligned}
p(\theta | \vec{x}) &\propto p(\vec{x} | \theta) \pi(\theta) = \prod p(x_i | \theta) \pi(\theta) \\
&= \prod_{i=1}^n (\theta e^{-\theta x_i}) \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\theta\beta} \\
&\propto \theta^n e^{-\theta \sum x_i} \theta^{\alpha-1} e^{-\theta\beta} = \theta^{\alpha+n-1} e^{-\theta(\beta+\sum x_i)} \\
&\propto \Gamma(\alpha+n, \beta+\sum x_i)
\end{aligned}$$

Thus gamma is conjugate for the exponential since the prior was a gamma as was the posterior.

- (b) Find the posterior distribution of  $\theta | (X_1, \dots, X_n)$ .  
Done in part (a).
- (c) Find the Bayes estimator for squared error loss, i.e.  $L(\theta, d) = (\theta - d)^2$ .  
The Bayes estimator to minimize squared error loss is the posterior mean.

$$E(\theta | X) = E \left[ \Gamma(\alpha+n, \beta+\sum x_i) \right] = \frac{\alpha+n}{\beta+\sum x_i}$$

(d) Consider now the case of observing a single additional random variable  $X_{n+1}$  which is independent of the previous sample and distributed according to  $X_{n+1}|\theta \sim \mathcal{E}(\theta)$ . Using the posterior distribution found in (b) as your prior, find the posterior distribution of  $\theta$  based on the observation of  $X_{n+1}$ .

$$\begin{aligned}
 p(\theta|x_{n+1}) &\propto p(x_{n+1}|\theta) \pi^*(\theta) \\
 &= \theta e^{-\theta x_{n+1}} \frac{(\beta + \sum x_i)^{\alpha+n}}{\Gamma(\alpha+n)} \theta^{\alpha+n-1} e^{-\theta(\beta+\sum x_i)} \\
 &\propto \theta^{\alpha+n+1-1} e^{-\theta(\beta+\sum x_i+x_{n+1})} \\
 &\propto \Gamma(\alpha+n+1, \beta + \sum x_i + x_{n+1})
 \end{aligned}$$

Note: This is the same result as if we started with all  $i = 1, \dots, n+1$  data points.

(e) Compare the posterior distribution of  $\theta$  derived in (d) to that obtained by using the original prior ( $\theta \sim \Gamma(\alpha, \beta)$ ) and the total sample having  $n+1$  observations  $X_1, \dots, X_n, X_{n+1}$ .  
 It's the same as noted in part (d).