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• 8.3.3
Let X1, ..., Xn

iid∼ N (µ, σ2).

(a) Find a UMVUE for µ if σ2 is known, and show that this estimator is CAN.
Since σ2 is known, we have

∑

xi being a complete sufficient statistic for µ (as seen in class
examples, previous homework or by writing out the likelihood in exponential family form).
Thus, taking X as our estimator of µ, we have one that is unbiased, and based on a complete
sufficient statistic and thus, by Theorem 8.3.8 (Lehman-Scheffe), is UMVUE for µ.
Now to show it is CAN (also done before), we can just appeal to the Lindeberg-Lévy CLT
and know that: √

n(X − µ)→
d
N (0, σ2)

(b) Find a UMVUE for σ2 if µ is known, and show that this estimator is CAN.
When µ is known, we can write the likelihood as follows:

f(
→
x |σ2) = exp{−n

2
ln(2πσ2) − 1

2σ2

∑

(xi − µ)2}

Thus,
∑

(xi −µ)2 is complete and sufficient for σ2 since we have the additional requirement
of Θ = (0,∞) containing a 1-dim rectangle.
Now noting that E(

∑

(xi−µ)2) = nσ2, we now know by the Lehman-Scheffe Theorem again

that T (
→

X) = 1
n

∑

(xi − µ)2 is UMVUE for σ2 (when µ is known).
Now for the CAN part, again by the Lindeberg-Levy CLT (and previous homework) we
know that √

n(σ̂2 − σ2)→
d
N (0, 2σ4)

• 8.3.6
Let X1, ..., Xn

iid∼ Γ(α − 1, β, 0).

(a) Find a BUE for αβ.
A good place to start is finding a comnplete sufficient statistic which is usually easy to find
via exponential family form. In the context of this problem:

f(
→
x |α, β) = exp{−n ln(βαΓ(α)) + (α − 1)ln

(

∏

xi

)

− 1

β

∑

xi}

From here we can see that (
∏

xi,
∑

xi) is jointly complete and sufficient for (α, β) since we
have the proper exponential family form and Θ = (0,∞) x (0,∞) contains a two-dimensional
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rectangle. Conveniently, E(Xi) = αβ (using the book’s parameterization), which means
that X is unbiased for αβ, and this is a function of our joint-complete sufficient statistics
(specifically 0 · ∏ xi + 1

n
·∑xi. Now appealing to the Theorem by Lehman-Scheffe again,

we have T (
→

X) = X is UMVUE (hence BUE) for αβ.

(b) Show estimator from part (a) is CAN.
Lindebeger-Levy CLT here too:

√
n(X − αβ)→

d
N (0, αβ2)

• 8.3.7
Let X1, ..., Xn

iid∼ E(θ) = θe−θx1[0,∞)(x). Show (n − 1)/
∑

Xi is the unique MVUE.

fX(x) =
n
∏

i=1

θe−θxi1[0,∞)(xi)

= e(θ
∑

xi−n log θ)1[0,∞)(min(xi))

This is exponential family form, with h(x) = 1[0,∞)(min(xi)), T (X) =
∑

xi, τ(θ) = θ and
A(θ) = n log θ. Θ=(the set of all possible θs) = (0,∞). This contains a 1-d open rectangle (e.g.
(0,1)). Therefore we can apply our theorem about exponential families and complete sufficient
statistics.

∑

xi is the complete sufficient statistic for θ. Now (n − 1)/
∑

Xi is a function of this
complete sufficient statistic, so if it has expectation θ, it must be the UMVUE. Recall that the
sum of n exponential(θ)s is Gamma(n,θ). Let Y =

∑

Xi ∼ Gamma(n, θ)

E
(

n − 1

Y

)

=
∫ ∞

0

n − 1

y
· y(n−1)θn

Γ(n)
e−θydy

= θ
∫ ∞

0

y(n−2)θ(n−1)

Γ(n − 1)
e−θydy

= θ

Since the form in the integral is the density of a Gamma(n-1,θ). (Here I used the rate parama-
terization of a Gamma).

• 8.3.9
In problem 8.2.15, find a BUE of µ/(1 − e−µ) and 1 − e−µ.
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From 8.2.15: Let X1, ..., Xn
iid∼ truncated Poisson where p(x|µ) = e−µµx/(x!(1− e−µ))1{1,2,...}(x).

Also from 8.2.15, we know that
∑

xi is complete and sufficient for µ under this distribution.
Now noting that E(X) = µ/(1 − e−µ), it follows immediately from Lehman-Scheffe that X is
UMVUE for µ/(1 − e−µ).
Now for (1 − e−µ). First find an unbiased estimator based on only one observation.

E(t(X1)) = (1 − e−µ)
∞
∑

k=1

t(k)µke−µ

k!(1 − e−µ)
= (1 − e−µ)

∞
∑

k=1

t(k)µk

k!
= eµ − 2 + e−µ

∞
∑

k=1

t(k)µk

k!
=

∞
∑

1

µk

k!
+

∞
∑

1

(−µ)k

k!
∞
∑

k=1

t(k)µk

k!
=

∞
∑

1

(1 + (−1)k)
µk

k!

t(X1) = 1 + (−1)X1

Use the refinement theorem to obtain the BUE of 1 − e−µ: T (X) = E(T (X1)|
∑

Xi). The sum
of Xi do not have a particularly nice distribution, so we leave it at this.

• 8.3.11
Let X be a single observation from a Poisson distribution with unknown parameter µ.

(a) Find a BUE for µ2. [Hint: Note that E(X(X − 1)) = µ2, work it out using V ar(X) =
E(X2) − (E(X))2 if you don’t see it immediately]
First note that when there’s just a single observation, the complete sufficient statistic for µ
in a Poisson distribution is just x itself. Showing this via exponential family form:

f(
→
x |µ) = f(x|µ) = exp{x ln(µ) − µ − ln(x!)}

and we note Θ = (0,∞) contains the necessary 1-dim rectangle. Now, in concordance with

the hint, we know T (
→

X) = T (X) = x(x − 1) is UMVUE (via Lehman-Scheffe) for µ2

(b) If we have a random sample of size n, find the BUE for µ2.
For a sample of size n, our complete sufficient statistic for µ is Sn =

∑

xi, and we know
the distribution of this statistic will follow P(nµ). Now in similar form to part (a), we can

see E(Sn(Sn − 1)) = n2µ2 so if we take T (
→

X) = 1
n2 Sn(Sn − 1) then we have an unbiased

estimator of µ2 based on the complete sufficient statistic for µ and will thus be UMVUE
(BUE) by Lehman-Scheffe.
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(c) Based on a sample of size 1, find the BUE for µr, r > 1. [Hint: Compute E(X(X − 1)(X −
2)...(X − r + 1))]
Back to the situation as in part (a) with just x being complete and sufficient. Now, as
suggested by the hint, if we calculate the expceted value there (very similar to hmwrk 3 in
512) we’ll see that expression is unbiased for µr and we have the BUE since it’s a function
of our complete sufficient statistic.

• 9.2.1
An urn has 10 balls with θ of them blue (the rest being whatever color you want, other than
blue). We’re in the following hypothesis testing situation:

H0 : θ = 3 vs. H1 : θ = 4

Suppose a sample consists of 3 balls, and the decision rule is to reject H0 if all 3 balls in the
sample are blue. Compute the errors α (Type I) and β (Type II) when:

(a) Sampling is done without replacement.

α = P ( all three balls are blue | θ = 3)

=
θ

10
· θ − 1

9
· θ − 2

8
=

θ(θ − 1)(θ − 2)

720
=

1

120

β = 1 − P ( all three balls are blue | θ = 4)

= 1 − 1

30
=

29

30

(b) Sampling is done with replacement.

α = P ( all three balls are blue | θ = 3)

=

(

θ

10

)3

=
27

1000

β = 1 − P ( all three balls are blue | θ = 4)

= 1 − 64

1000
=

936

1000

• 9.2.5
Suppose we have a random sample of size 5 from a Poisson distribution with mean λ ∈ {2, 3}.
We want to test the following:

H0 : λ = 3 vs. H1 : λ = 2
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with rejection when X < c. Find the critical region to use for this test if α is set at 0.05 (or as
close to 0.05 as possible using a Poisson Table).
The appropriate critical region will be such that

Pr(X < c|λ = 3) = Pr(
5
∑

i=1

xi < 5c|λ = 3)

Now since we know that the sum of n independent poisson r.v.’s with common support will be
distributed as poisson with nλ, then we know what the distribution of our test statistic

∑

xi is.
With respect to the poisson table on page 770, we can see that a value of 9 will keep the test at
a level 0.05. This implies the value of c we’re looking for is 9/5 = 1.8.
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