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e 8.3.3 )
Let X1, ..., Xy “ N (p, 02).

(a) Find a UMVUE for p if 02 is known, and show that this estimator is CAN.

Since ¢ is known, we have Y x; being a complete sufficient statistic for p (as seen in class
examples, previous homework or by writing out the likelihood in exponential family form).
Thus, taking X as our estimator of z1, we have one that is unbiased, and based on a complete
sufficient statistic and thus, by Theorem 8.3.8 (Lehman-Scheffe), is UMVUE for p.

Now to show it is CAN (also done before), we can just appeal to the Lindeberg-Lévy CLT
and know that:

V(X = ) 2 N (0,57

(b) Find a UMVUE for o if u is known, and show that this estimator is CAN.
When g is known, we can write the likelihood as follows:

f(z|o?) = exp{—gln (2mo?) Z

Thus, > (z; — p)? is complete and sufficient for o2 since we have the additional requirement
of © = (0, 00) containing a 1-dim rectangle.
Now noting that E(3(z; —p)?) = no?, we now know by the Lehman-Scheffe Theorem again
that T'(X ) = 13 (@; — p)? is UMVUE for 62 (when g is known).
Now for the CAN part, again by the Lindeberg-Levy CLT (and previous homework) we
know that R

Vn(o? —o?) 7N(O, 20"

e 8.3.6
Let X1,..., X, “T(a—1,3,0).

(a) Find a BUE for af.
A good place to start is finding a comnplete sufficient statistic which is usually easy to find
via exponential family form. In the context of this problem:

FF [0, 8) = eap{=n In(5"T(@) + (@ = Din ([[as) - 5 X

From here we can see that (ITx;,> ;) is jointly complete and sufficient for («, /3) since we
have the proper exponential family form and © = (0, c0) x (0, c0) contains a two-dimensional

1



rectangle. Conveniently, F(X;) = af (using the book’s parameterization), which means
that X is unbiased for o3, and this is a function of our joint-complete sufficient statistics
(specifically 0 - [Tx; + % - > x;. Now appealing to the Theorem by Lehman-Scheffe again,

we have T'(X) = X is UMVUE (hence BUE) for af.

(b) Show estimator from part (a) is CAN.
Lindebeger-Levy CLT here too:

VA(X — af) = N (0, a5?)

e 8.3.7
Let X1, .., X, X £(6) = 0e="" 19 o) (x). Show (n — 1)/ 3 X; is the unique MVUE.

fx(l’) = ﬁ96_0m1[0700)(l’i)

i=1
= O mmnlosd o (min(z;))

This is exponential family form, with h(xz) = ljeo)(min(z;)), T(X) = Y, 7() = 6 and
A(0) = nlogf. ©=(the set of all possible fs) = (0, 00). This contains a 1-d open rectangle (e.g.
(0,1)). Therefore we can apply our theorem about exponential families and complete sufficient
statistics. Y x; is the complete sufficient statistic for 6. Now (n — 1)/ > X; is a function of this
complete sufficient statistic, so if it has expectation 6, it must be the UMVUE. Recall that the
sum of n exponential(#)s is Gamma(n,f). Let Y = 3 X; ~ Gamma(n, 6)

o) _ n—1)gn
E(n—l) _ / n—1 y( )6 e_eydy

Y y I'(n)
(n—2)p(n—1)
yrrey )0
= / e dy
n — 1

Since the form in the integral is the density of a Gamma(n-1,6). (Here I used the rate parama-
terization of a Gamma).

e 8.3.9
In problem 8.2.15, find a BUE of p/(1 —e™#) and 1 — e™*.



From 8.2.15: Let X1, ..., X,, * truncated Poisson where p(z|u) = e #p /(z!(1 — e "), ().
Also from 8.2.15, we know that Y z; is complete and sufficient for p under this distribution.
Now noting that F(X) = u/(1 —e™#), it follows immediately from Lehman-Scheffe that X is
UMVUE for p/(1 —e™#).

Now for (1 — e™#). First find an unbiased estimator based on only one observation.

E(t(Xy) = (1—e™)

g/:!((ﬁ)ﬁk:j) = 0=
gt(?ﬂk — e —24ep
Z:lt(/z'u’“ _ iu_’:+§:(—ﬁ)’f
SIS = Sl

HXy) =1+ (-1)™

Use the refinement theorem to obtain the BUE of 1 —e™: T(X) = E(T(X1)| > X;). The sum
of X; do not have a particularly nice distribution, so we leave it at this.

8.3.11
Let X be a single observation from a Poisson distribution with unknown parameter .

(a)

Find a BUE for p?. [Hint: Note that E(X(X — 1)) = p?, work it out using Var(X) =
E(X?) — (E(X))? if you don’t see it immediately]

First note that when there’s just a single observation, the complete sufficient statistic for u
in a Poisson distribution is just x itself. Showing this via exponential family form:

F(7 |p) = f(xlp) = exp{z In(u) — p — In(z))}

and we note © = (0, 00) contains the necessary 1-dim rectangle. Now, in concordance with
the hint, we know T(X) = T(X) = z(x — 1) is UMVUE (via Lehman-Scheffe) for p?

If we have a random sample of size n, find the BUE for p2.
For a sample of size n, our complete sufficient statistic for u is S, = Y x;, and we know
the distribution of this statistic will follow P(nu). Now in similar form to part (a), we can

—

see E(S,(S, — 1)) = n?u? so if we take T(X) = -55,(S, — 1) then we have an unbiased
estimator of p? based on the complete sufficient statistic for x4 and will thus be UMVUE
(BUE) by Lehman-Scheffe.



(c) Based on a sample of size 1, find the BUE for p",r > 1. [Hint: Compute E(X (X —1)(X —
2)..(X —=r+1))]
Back to the situation as in part (a) with just x being complete and sufficient. Now, as
suggested by the hint, if we calculate the expceted value there (very similar to hmwrk 3 in
512) we’ll see that expression is unbiased for " and we have the BUE since it’s a function
of our complete sufficient statistic.

e 9.2.1
An urn has 10 balls with 6 of them blue (the rest being whatever color you want, other than
blue). We're in the following hypothesis testing situation:

Hy:0=3 vs. H :0=4

Suppose a sample consists of 3 balls, and the decision rule is to reject Hy if all 3 balls in the
sample are blue. Compute the errors a (Type I) and 3 (Type II) when:

(a) Sampling is done without replacement.

a = P(all three balls are blue | § = 3)
0 0-1 0-2 0(0—-1)(0—2) 1

10 9 8 720 T 120

B = 1— P(all three balls are blue | § = 4)
1. »
30 30

(b) Sampling is done with replacement.

a = P(all three balls are blue | § = 3)
AN
~\10/ 1000

B = 1— P(all three balls are blue | § = 4)
64 936

S T
1000 1000

e 925
Suppose we have a random sample of size 5 from a Poisson distribution with mean A\ € {2,3}.
We want to test the following:

Hy:AN=3 vs. H:A=2
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with rejection when X < c¢. Find the critical region to use for this test if « is set at 0.05 (or as
close to 0.05 as possible using a Poisson Table).
The appropriate critical region will be such that

5
Pr(X < cA=3)=Pr(>_xz; <5c|A =3)

i=1

Now since we know that the sum of n independent poisson r.v.’s with common support will be
distributed as poisson with n\, then we know what the distribution of our test statistic Y x; is.
With respect to the poisson table on page 770, we can see that a value of 9 will keep the test at
a level 0.05. This implies the value of ¢ we're looking for is 9/5 = 1.8.



