

• 8.3.3

Let $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$.

(a) Find a UMVUE for μ if σ^2 is known, and show that this estimator is CAN.

Since σ^2 is known, we have $\sum x_i$ being a complete sufficient statistic for μ (as seen in class examples, previous homework or by writing out the likelihood in exponential family form). Thus, taking \bar{X} as our estimator of μ , we have one that is unbiased, and based on a complete sufficient statistic and thus, by Theorem 8.3.8 (Lehman-Scheffe), is UMVUE for μ .

Now to show it is CAN (also done before), we can just appeal to the Lindeberg-Lévy CLT and know that:

$$\sqrt{n}(\bar{X} - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

(b) Find a UMVUE for σ^2 if μ is known, and show that this estimator is CAN.

When μ is known, we can write the likelihood as follows:

$$f(\vec{x} | \sigma^2) = \exp\left\{-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum (x_i - \mu)^2\right\}$$

Thus, $\sum (x_i - \mu)^2$ is complete and sufficient for σ^2 since we have the additional requirement of $\Theta = (0, \infty)$ containing a 1-dim rectangle.

Now noting that $E(\sum (x_i - \mu)^2) = n\sigma^2$, we now know by the Lehman-Scheffe Theorem again that $T(\vec{X}) = \frac{1}{n} \sum (x_i - \mu)^2$ is UMVUE for σ^2 (when μ is known).

Now for the CAN part, again by the Lindeberg-Lévy CLT (and previous homework) we know that

$$\sqrt{n}(\hat{\sigma}^2 - \sigma^2) \xrightarrow{d} \mathcal{N}(0, 2\sigma^4)$$

• 8.3.6

Let $X_1, \dots, X_n \stackrel{iid}{\sim} \Gamma(\alpha - 1, \beta, 0)$.

(a) Find a BUE for $\alpha\beta$.

A good place to start is finding a complete sufficient statistic which is usually easy to find via exponential family form. In the context of this problem:

$$f(\vec{x} | \alpha, \beta) = \exp\left\{-n \ln(\beta^\alpha \Gamma(\alpha)) + (\alpha - 1) \ln\left(\prod x_i\right) - \frac{1}{\beta} \sum x_i\right\}$$

From here we can see that $(\prod x_i, \sum x_i)$ is jointly complete and sufficient for (α, β) since we have the proper exponential family form and $\Theta = (0, \infty) \times (0, \infty)$ contains a two-dimensional

rectangle. Conveniently, $E(X_i) = \alpha\beta$ (using the book's parameterization), which means that \bar{X} is unbiased for $\alpha\beta$, and this is a function of our joint-complete sufficient statistics (specifically $0 \cdot \prod x_i + \frac{1}{n} \cdot \sum x_i$). Now appealing to the Theorem by Lehman-Scheffe again, we have $T(\vec{X}) = \bar{X}$ is UMVUE (hence BUE) for $\alpha\beta$.

(b) Show estimator from part (a) is CAN.

Lindebeger-Levy CLT here too:

$$\sqrt{n}(\bar{X} - \alpha\beta) \xrightarrow{d} \mathcal{N}(0, \alpha\beta^2)$$

• 8.3.7

Let $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{E}(\theta) = \theta e^{-\theta x} 1_{[0, \infty)}(x)$. Show $(n-1)/\sum X_i$ is the unique MVUE.

$$\begin{aligned} f_X(x) &= \prod_{i=1}^n \theta e^{-\theta x_i} 1_{[0, \infty)}(x_i) \\ &= e^{(\theta \sum x_i - n \log \theta)} 1_{[0, \infty)}(\min(x_i)) \end{aligned}$$

This is exponential family form, with $h(x) = 1_{[0, \infty)}(\min(x_i))$, $T(X) = \sum x_i$, $\tau(\theta) = \theta$ and $A(\theta) = n \log \theta$. Θ = (the set of all possible θ s) = $(0, \infty)$. This contains a 1-d open rectangle (e.g. $(0, 1)$). Therefore we can apply our theorem about exponential families and complete sufficient statistics. $\sum x_i$ is the complete sufficient statistic for θ . Now $(n-1)/\sum X_i$ is a function of this complete sufficient statistic, so if it has expectation θ , it must be the UMVUE. Recall that the sum of n exponential(θ)s is Gamma(n, θ). Let $Y = \sum X_i \sim \text{Gamma}(n, \theta)$

$$\begin{aligned} E\left(\frac{n-1}{Y}\right) &= \int_0^\infty \frac{n-1}{y} \cdot \frac{y^{(n-1)\theta}}{\Gamma(n)} e^{-\theta y} dy \\ &= \theta \int_0^\infty \frac{y^{(n-2)\theta} \theta^{(n-1)}}{\Gamma(n-1)} e^{-\theta y} dy \\ &= \theta \end{aligned}$$

Since the form in the integral is the density of a Gamma($n-1, \theta$). (Here I used the rate parameterization of a Gamma).

• 8.3.9

In problem 8.2.15, find a BUE of $\mu/(1 - e^{-\mu})$ and $1 - e^{-\mu}$.

From 8.2.15: Let $X_1, \dots, X_n \stackrel{iid}{\sim}$ truncated Poisson where $p(x|\mu) = e^{-\mu} \mu^x / (x!(1-e^{-\mu})) 1_{\{1,2,\dots\}}(x)$. Also from 8.2.15, we know that $\sum x_i$ is complete and sufficient for μ under this distribution. Now noting that $E(X) = \mu / (1 - e^{-\mu})$, it follows immediately from Lehman-Scheffe that \bar{X} is UMVUE for $\mu / (1 - e^{-\mu})$.

Now for $(1 - e^{-\mu})$. First find an unbiased estimator based on only one observation.

$$\begin{aligned}
E(t(X_1)) &= (1 - e^{-\mu}) \\
\sum_{k=1}^{\infty} \frac{t(k)\mu^k e^{-\mu}}{k!(1-e^{-\mu})} &= (1 - e^{-\mu}) \\
\sum_{k=1}^{\infty} \frac{t(k)\mu^k}{k!} &= e^{\mu} - 2 + e^{-\mu} \\
\sum_{k=1}^{\infty} \frac{t(k)\mu^k}{k!} &= \sum_1^{\infty} \frac{\mu^k}{k!} + \sum_1^{\infty} \frac{(-\mu)^k}{k!} \\
\sum_{k=1}^{\infty} \frac{t(k)\mu^k}{k!} &= \sum_1^{\infty} (1 + (-1)^k) \frac{\mu^k}{k!} \\
t(X_1) &= 1 + (-1)^{X_1}
\end{aligned}$$

Use the refinement theorem to obtain the BUE of $1 - e^{-\mu}$: $T(X) = E(T(X_1) | \sum X_i)$. The sum of X_i do not have a particularly nice distribution, so we leave it at this.

- 8.3.11

Let X be a single observation from a Poisson distribution with unknown parameter μ .

(a) Find a BUE for μ^2 . [Hint: Note that $E(X(X-1)) = \mu^2$, work it out using $Var(X) = E(X^2) - (E(X))^2$ if you don't see it immediately]

First note that when there's just a single observation, the complete sufficient statistic for μ in a Poisson distribution is just x itself. Showing this via exponential family form:

$$f(\vec{x} | \mu) = f(x|\mu) = \exp\{x \ln(\mu) - \mu - \ln(x!)\}$$

and we note $\Theta = (0, \infty)$ contains the necessary 1-dim rectangle. Now, in concordance with the hint, we know $T(\vec{X}) = T(X) = x(x-1)$ is UMVUE (via Lehman-Scheffe) for μ^2

(b) If we have a random sample of size n , find the BUE for μ^2 .

For a sample of size n , our complete sufficient statistic for μ is $S_n = \sum x_i$, and we know the distribution of this statistic will follow $\mathcal{P}(n\mu)$. Now in similar form to part (a), we can see $E(S_n(S_n - 1)) = n^2\mu^2$ so if we take $T(\vec{X}) = \frac{1}{n^2}S_n(S_n - 1)$ then we have an unbiased estimator of μ^2 based on the complete sufficient statistic for μ and will thus be UMVUE (BUE) by Lehman-Scheffe.

(c) Based on a sample of size 1, find the BUE for $\mu^r, r > 1$. [Hint: Compute $E(X(X - 1)(X - 2)\dots(X - r + 1))$]

Back to the situation as in part (a) with just x being complete and sufficient. Now, as suggested by the hint, if we calculate the expected value there (very similar to hwk 3 in 512) we'll see that expression is unbiased for μ^r and we have the BUE since it's a function of our complete sufficient statistic.

- 9.2.1

An urn has 10 balls with θ of them blue (the rest being whatever color you want, other than blue). We're in the following hypothesis testing situation:

$$H_0 : \theta = 3 \quad \text{vs.} \quad H_1 : \theta = 4$$

Suppose a sample consists of 3 balls, and the decision rule is to reject H_0 if all 3 balls in the sample are blue. Compute the errors α (Type I) and β (Type II) when:

(a) Sampling is done without replacement.

$$\begin{aligned} \alpha &= P(\text{all three balls are blue} \mid \theta = 3) \\ &= \frac{\theta}{10} \cdot \frac{\theta - 1}{9} \cdot \frac{\theta - 2}{8} = \frac{\theta(\theta - 1)(\theta - 2)}{720} = \frac{1}{120} \end{aligned}$$

$$\begin{aligned} \beta &= 1 - P(\text{all three balls are blue} \mid \theta = 4) \\ &= 1 - \frac{1}{30} = \frac{29}{30} \end{aligned}$$

(b) Sampling is done with replacement.

$$\begin{aligned} \alpha &= P(\text{all three balls are blue} \mid \theta = 3) \\ &= \left(\frac{\theta}{10}\right)^3 = \frac{27}{1000} \end{aligned}$$

$$\begin{aligned} \beta &= 1 - P(\text{all three balls are blue} \mid \theta = 4) \\ &= 1 - \frac{64}{1000} = \frac{936}{1000} \end{aligned}$$

- 9.2.5

Suppose we have a random sample of size 5 from a Poisson distribution with mean $\lambda \in \{2, 3\}$. We want to test the following:

$$H_0 : \lambda = 3 \quad \text{vs.} \quad H_1 : \lambda = 2$$

with rejection when $\bar{X} < c$. Find the critical region to use for this test if α is set at 0.05 (or as close to 0.05 as possible using a Poisson Table).

The appropriate critical region will be such that

$$Pr(\bar{X} < c | \lambda = 3) = Pr\left(\sum_{i=1}^5 x_i < 5c | \lambda = 3\right)$$

Now since we know that the sum of n independent poisson r.v.'s with common support will be distributed as poisson with $n\lambda$, then we know what the distribution of our test statistic $\sum x_i$ is. With respect to the poisson table on page 770, we can see that a value of 9 will keep the test at a level 0.05. This implies the value of c we're looking for is $9/5 = 1.8$.