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February 25, 2004

• 8.1.4
Let X1, ..., Xn

iid
∼ Γ(α, β) = 1

βαΓ(α)
xα−1e−

x
β . Find the minimal sufficient statistics for:

First note:

Γ(
→

X |α, β)

Γ(
→

Y |α, β)
=

(

∏

xi
∏

yi

)α

e−
∑

xi−
∑

yi

β

(a) and (b)
Clearly by the expression above, we have minimal sufficient statistics of

∏

xi for α when β
is known, and

∑

xi for β when α is known.

(c) Show that MLE’s in parts (a) and (b) are functions of the statistics in each part.
MLE for α when β is known is the solution to

−n ln(β) − digamma(α̂) +
∑

ln(xi) = 0

this is clearly a function of our sufficient statistic from part (a) since
∑

ln(xi) = ln(
∏

xi)

MLE for β when α is known is
X

α

and this is clearly a function of the minimal sufficient statistic found in part (b).

Note: The method shown above is not unique for solving this problem. The Gamma distribution
is a member of the exponential family (class) and thus we could have used this fact in solving
for the sufficient statistics, and then could immediately have a confirmation on minimum suf-
ficiency and completeness. However, the method above is not useless, not all distributions are
exponential family, and then those results do not apply.

• 8.1.11
Let X1, ..., Xn

iid
∼ LN(µ, σ2). Find the joint sufficient statistics for (µ, σ2), and show that the

MLE’s are functions of this joint statistic.
We know already that for a r.v. Y = ln(X) ∼ N (µ, σ2), the sufficent statistic for θ =

(µ, σ2) is T (
→

Y ) = (
∑

yi,
∑

y2
i ). Thus our sufficient statistic for this problem will be T (

→

X) =
(
∑

ln(xi),
∑

(ln(xi))
2).

1



µ̂ =

∑

ln(xi)

n
(fxn of sufficient statistic above)

σ̂2 =

∑

ln(xi) − µ̂)2

n
(also a fxn of sufficient statistic above)

• 8.1.12
Let X1, ..., Xn

iid
∼ f(x|θ) = θ(1+x)−(1+θ)1(0,∞)(x) for θ > 0. Show that

∏n
i=1(1+Xi) is a minimal

sufficient statistc for θ, and that the MLE is a function of this statistic.

∏n
i=1 θ(1 + x)−(1+θ)1(0,∞)(x)

∏n
i=1 θ(1 + y)−(1+θ)1(0,∞)(y)

=
θn (

∏n
i=1(1 + xi))

−(1+θ) 1(0,∞)(xi)

θn (
∏n

i=1(1 + yi))
−(1+θ) 1(0,∞)(yi)

Now we can see that first,
∏n

i=1(1 + xi) is a sufficient by the ’factorization theorem’, and second,
that it is mininmal since the expression will be independent of θ iff

∏n
i=1(1 + xi) =

∏n
i=1(1 + yi).

Solving for the MLE for θ,

θ̂ =
n

∑n
i=1 ln(1 + xi)

=
n

ln(
∏n

i=1(1 + xi))

and we can see this is a function of the minimal sufficient statistic found above. Note: ”n” is in
the numerator of our MLE, but that’s okay! Sometimes it happens, as shown here.

• 8.2.4

(a) Let X1, X2
iid
∼ f(x|θ) = 1

θ
e

−x
θ 1(0,∞)(x). Show that T1(X1, X2) = X1 + X2, and T2(X1, X2) =

X1

X1+X2
are independent r.v.’s. [Hint: Use Basu’s Theorem (8.2.23)].

First thing to do is identify what distribution we’re working with here, it’s an exponential
with mean paramter θ. To use Basu’s theorem, we’ll need to show two things: that one
of T1, and T2 is complete and sufficient, and the other is ancillary (not just first-order
ancillary).

We already know
∑n

i=1 xi is sufficient for θ when we have X1, ..., Xn
iid
∼ E(θ) from class.

Thus, T1 is sufficient here since we have n = 2. Now we just show T2 is ancillary, that is,
the distribution of T2 is independent of θ.
First consider Yi = Xi/θ. A simple variable transformtion shows Yi ∼ E(1) which is clearly
independent of θ (see notes from 512, it’s in there). Now note

T2 =
X1

X1 + X2
=

θY1

θ(Y1 + Y2)
=

Y1

Y1 + Y2
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Since the distribution of Y1/(Y1 + Y2) is independent of θ, and this equals T2, then the dis-
tribution of T2 must also be indpendent of θ, and thus ancillary. Now by Basu’s theorem,
we have that T1, and T2 are independent.

Slight aside: The exponential distribution (non-shifted one) belongs to a family called a
”scale family”. This is because they’re all related by a scaled factor (as we saw above,
by θ). There are also location families, and location-scale families. Similar to the method
above for showing ancillarity, for location families we’ll look for a difference between two
r.v.’s, and for location-scale families we’ll have both a difference and ratio (ex. X1−X2

∑

Xi−X2

).

(b) Generalize the result in part (a) by proving:

If X1, ..., Xn
iid
∼ f(part(a)), then Sn = X1 + ... + Xn and Ti = Xi

Sn
are independent

∀ i ∈ {1, ..., n}.
Well we already said above that Sn =

∑

xi is sufficient. Now we just note that instead of
Y1, and Y2 we now have Y1, ..., Yn and we’re done using the same argument(s) as before.

• 8.2.5
Let X1, ..., Xn

iid
∼ U(0, θ) and Yi denote the ith order statistic of the sample. Show that the

distribution of Tn =
∑n

i=1 Xi/Yn does not depend on θ, hence that Tn is independent of Yn.
One way to do this, as suggested by the hint, is through induction. But it kind of sucks, and
there’s an easier way.
First you have to note that the distribution we have here is a scale family as in the previous
problem. Let Zi = Xi

θ

dx

dz
= θ

fZ(z) = fX(θ · z) · θ

=
θ

θ
1(0≤θ·z≤θ)

= 1(0≤z≤1)

= U(0, 1)

Tn =
n
∑

i=1

Xi

X(n)

=
n
∑

i=1

θZi

θZ(n)

=
n
∑

i=1

Zi

Z(n)

Since Zi are independent of θ, and Tn can be expressed as only a function of the Zi’s without
θ, Tn must be an ancillary statistic. An example in the book showed that X(n) is a complete
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sufficient statistic for θ, so by Basu’s theorem, Yn = X(n) and Tn are independent.

• 8.2.9
Let X1, ..., Xn be as in problem 8.1.8, that is,

iid
∼ discrete U(1, θ). Yn = max(X1, ..., Xn) is the

minimal suffcient statistic for θ. Show Yn is also complete.

P (Yn ≤ k) = P (X ≤ k)n

=
k

θ

n

P (Yn = k) = P (Yn ≤ k) − P (Yn ≤ k − 1)

= θ−n(kn − (k − 1)n)

E(u(Yn)) =
θ
∑

k=1

u(k)θ−n(kn − (k − 1)n)

= θ−n
θ
∑

k=1

u(k)(kn − (k − 1)n)

E(u(Yn)) = 0 ⇐⇒
θ
∑

k=1

u(k)(kn − (k − 1)n) = 0

We show u(k) is identically zero by induction.

Let θ = 1

u(1) · 1 = 0

u(1) = 0

Assume u(k) = 0 for k ∈ (1, .., θ − 1)
θ
∑

k=1

u(k)(kn − (k − 1)n) = u(θ)(thetan − (theta − 1)n)

= 0 ⇐⇒ u(θ) = 0

Since θn−(θ−1)n 6= 0 for n > 0. Therefore, Yn is complete, since no function of it is an unbiased
estimator of zero.

• 8.2.15
Let X1, ..., Xn

iid
∼ truncated Poisson where p(x|µ) = e−µµx/(x!(1 − e−µ))1{1,2,...}(x).

(a) Show the joint distribution of X1, .., Xn is a member of the exponential class.
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f(
→

X |µ) =
e−nµµ

∑

xi

∏

xi!
(1 − e−µ)−n = e

ln

(

e−nµµ

∑

xi
∏

xi!
(1−e−µ)−n

)

= e
∑

xiln(µ)−ln(
∏

xi!)−n(µ+ln(1−eµ)

Now we can see that we have the exponential family form where using the notation from

D&M: φ0(
→

X) = −ln(
∏

xi!), c0(µ) = −n(µ + ln(1 − eµ), φ1(
→

X) =
∑

xi, c1(µ) = ln(µ).

(b) Find a complete minimal sufficient statistic for µ.
From the form above and since our parameter space for µ, Θ = (0,∞) contains a one-
dimensional rectangle (interval), we can see that

∑

xi is not only a sufficient statistic, but
also minimal and complete.

• 8.2.17
Let X1, ..., Xn

iid
∼ N (µ, σ2). Show X̄n and

∑1
i=n aiXi are independent r.v.’s if

∑1
i=n ai = 0.

We already know that
∑

xi is complete and minimally sufficient for µ when σ2 is known (and
hence X̄n). Now to use Basu’s Theorem, we would just need to show that

∑1
i=n aiXi is ancillary

with respect to µ.
Note that since each xi is independently normally distributed,

∑1
i=n aiXi ∼ N (

∑1
i=n aiµ,

∑1
i=n a2

i σ
2) =

N (µ
∑1

i=n ai, σ
2∑1

i=n a2
i ). Now this will clearly be indpendent of µ (and thus ancillary) iff

∑n
i=1 ai = 0. Thus by Basu’s Theorem, X̄n and

∑1
i=n aiXi are independent r.v.’s if

∑1
i=n ai = 0.
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