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7.8 X ∼ N (θ, 1) and Y ∼ N (3θ, 1) are independent random variables.

a. Since X and Y have common support for all values of θ ∈ Θ = R1, we try
finding the maximum likelihood estimate by differentiating the log likelihood.
The likelihood function is

L(θ |X, Y ) =
1√
2π

exp

{

− (X − θ)2

2

}

1√
2π

exp

{

− (Y − 3θ)2

2

}

,

and the log likelihood is

L(θ |X, Y ) = − log(2π) − (X − θ)2

2
− (Y − 3θ)2

2
.

We thus find the score function

U(θ) = (X − θ) + 3(Y − 3θ),

and by setting U(θ̂) = 0, we find θ̂ = (X + 3Y )/10. (Note that the second

derivative of the log likelihood is negative, so θ̂ is in fact the MLE.)

b. For θ̃ = aX + bY , simple laws of expectation tell us that E[θ̃] = aθ + b3θ =
(a + 3b)θ. For θ̃ to be unbiased, we thus need a + 3b = 1.

c. For θ̃ = aX + bY , the independence of X and Y along with the properties of
variance of scaled random variables and sums of random variables provides that
V ar(θ̃) = a2V ar(X) + b2V ar(Y ) = a2 + b2. So for unbiased θ̃, a = 1 − 3b and
the variance is V ar(θ̃) = 1− 6b + 9b2 + b2 = 1− 6b + 10b2. The derivative of this
variance with respect to b is

dV ar(θ̃)

db
= −6 + 20b,

and setting the derivative equal to zero yields b = 3/10, which is a minimum,
because the second derivative of the variance is positive. We then find a =
1 − 3b = 1/10. This choice of a and b corresponds exactly to the MLE found in
part a, so we have shown that the MLE for this Normal linear regression problem
is the best linear unbiased estimator.

An aside: Note that this result is easily generalized: Suppose that for i = 1, . . . , n
we have independent random variables Xi ∼ (wiθ, σ2) (not necessarily normal).
Consider an unbiased linear estimator

θ̃ =
n
∑

i=1

aiXi.
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Because we can easily find the mean and variance of θ̃ as

θ̃ ∼
(

θ

n
∑

i=1

aiwi, σ
2

n
∑

i=1

a2
i

)

,

the unbiasedness of θ̃ dictates that
∑n

i=1 aiwi = 1. So we minimize the variance
subject to this constraint using the method of Lagrange multipliers. That is we
minimize the function

g(~a, λ) =
n
∑

i=1

a2
i + λ

(

1 −
n
∑

i=1

aiwi

)

,

where λ > 0 is the Lagrange multiplier. Now

∂g

∂ak
= 2ak − λwk

∂g

∂λ
=

(

1 −
n
∑

i=1

aiwi

)

,

and setting these n + 1 equations simultaneously equal to zero, we find that

ak =
λwk

2
and λ =

2
∑n

i=1 w2
i

.

Thus, the BLUE is

θ̃ =

∑n
i=1 wiXi
∑n

i=1 w2
i

.

Now consider the least squares estimator found as the estimator θ̂ which minimizes
the sum of the squared deviations

S(θ) =

n
∑

i=1

(Xi − E(Xi))
2 =

n
∑

i=1

(Xi − wiθ)2.

Taking the derivative with respect to θ,

dS

dθ
= −2

n
∑

i=1

wi(Xi − wiθ),

and setting that derivative equal to zero yields

θ̂ =

∑n
i=1 wiXi
∑n

i=1 w2
i

,
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which is the BLUE found above. If we further knew that each of the Xi’s was
normally distributed, we would find that S(θ) is directly proportional to the score
function: U(θ) = −S(θ)/σ2, and the least squares estimate is the MLE as well
as being BLUE. This problem is a simple linear regression problem in which the
intercept is known to be zero. The results generalize to a nonzero intercept and
to multiple linear regression models:

– For independent random variables having common variance and means
that are a known linear function of an unknown parameter vector, the
least squares estimate is the BLUE no matter what the shape of the
distribution of the Xi’s (they need not even have the same shape). (This
is the Gauss-Markov Theorem.)

– If the independent random variables described above are normally dis-
tributed, the least squares estimate is also the MLE.

7.10 We are given that estimator Tn( ~Xn) has asymptotic distribution

nδ(Tn( ~Xn) − θ) →d N
(

0, J2(θ)
)

for some δ > 0. Now n−δ → 0, so a simple application of Slutsky’s theorem provides
that

n−δnδ(Tn( ~Xn) − θ) →d 0N
(

0, J2(θ)
)

= 0.

And when a random variable converges in distribution to a constant, it also converges
in probability to that constant, proving the consistency we desire.

7.11 In the following, we will consider the concentration of the approximate asymptotic
distributions in the following manner: For two estimators Tn and Sn, we define Tn

asymptotically more efficient than Sn if for any given r > 0, there exists an nr such
that for all n > nr, Pr(|Tn − θ| < r) − Pr(|Sn − θ| < r) > 0.

Suppose we are given that estimators Tn( ~Xn) and Sn( ~Xn) have asymptotic distribu-
tions

nδ(Tn( ~Xn) − θ) →d N
(

0, J2(θ)
)

nγ(Sn( ~Xn) − θ) →d N
(

0, V 2(θ)
)

for some δ > 0 and γ > 0. Then, by the definition of convergence in distribution, for
any ε > 0 there exist nεT and nεS such that for all c and every n > nε = max(nεT , nεS)

|Pr(nδ(Tn( ~Xn) − θ) < c) − Φ(c/J(θ))| < ε

|Pr(nγ(Sn( ~Xn) − θ) < c) − Φ(c/V (θ))| < ε

where Φ(z) is the cumulative distribution function for the standard normal distribu-
tion. Now, for fixed n,

Pr(|Tn − θ| < r) = Pr((Tn − θ) < r) − Pr((Tn − θ) < −r)

= Pr((Tn − θ) < r) − Pr((Tn − θ) < −r)

= Pr(nδ(Tn − θ) < nδr) − Pr(nδ(Tn − θ) < −nδr)
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with an analogous result for Pr(|Sn − θ| < r). So for sufficiently large n,

|Pr(|Tn − θ| < r) − (Φ(nδr/J(θ))− Φ(−nδr/J(θ))| < 2ε

|Pr(|Sn − θ| < r) − (Φ(nγr/V (θ)) − Φ(−nγr/V (θ))| < 2ε

We then know that for sufficiently large n, the quantity

(Φ(nδr/J(θ))− Φ(−nδr/J(θ))− (Φ(nγr/V (θ)) − Φ(−nγr/V (θ))

is within 4ε of the true value of

Pr(|Tn − θ| < r) − Pr(|Sn − θ| < r).

Now, for fixed r > 0 and J(θ) and V (θ), if δ > γ > 0, then for any n such that

n >

(

J(θ)

V (θ)

)1/(δ−γ)

we have

Φ(nδr/J(θ)) − Φ(nγr/V (θ)) = Φ(−nγr/V (θ)) − Φ(−nδr/J(θ)) = ∆n > 0

Note that ∆n increases as a function of n for δ > γ. Thus for any choice of r > 0
and any given δ > γ > 0, we can choose an n0 such that ∆n0

> 0. Then, choosing
ε < ∆n0

/4 will guarantee that for n > nr = max(n0, nε) the comparison based on the
approximate distributions will be of the same sign as the comparison based on the
actual distributions.

Now consider a CAN estimator Sn, which by definition has γ = 1/2. Then

a. when δ > 1/2, Tn is asymptotically more efficient than Sn,

b. when δ = 1/2, Tn is also CAN allowing comparisons of asymptotic relative effi-
ciency according to that definition, and

c. when δ < 1/2, Sn is asymptotically less efficient than Sn.

7.13 We are given X1, . . . , Xn are i.i.d. with Xi ∼ N (µ, σ2) with µ known. The MLE of
σ2 is thus

σ̂2 =
1

n

n
∑

i=1

(Xi − µ)2

Now, based on the normality of Xi, we know that for Wi = ((Xi − µ)/σ)2 has the
Wi’s i.i.d. Wi ∼ χ2

1 and thus E(Wi) = 1 and V ar(Wi) = 2. By the CLT,

√
n(W − 1) →d N (0, 2)

and because σ̂2 = σ2W , we immediately obtain (via delta method or Slutsky’s) that

√
n(σ̂2 − σ2) →d N (0, 2σ4).
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An aside: Note that we know that
∑n

i=1 Wi is exactly distributed according to a
chi square distribution with n degrees of freedom. Hence, we find that for large
degrees of freedom, a chi square distribution is approximately normal.

7.14 We are given that independent Xi ∼ U(θ−1/2, θ+1/2) for i = 1, 2, . . .. Any estimator
a(X(1) + 1/2) + (1 − a)(X(n)−1/2) for 0 < a < 1 is an MLE of θ. I will first find the
exact distribution of the general MLE.

The density for the MLE is found by first finding the joint density for U = a(X(1) +
1/2) ∈ (aθ, a(θ + 1)) and V = (1 − a)(X(n) − 1/2) ∈ ((1 − a)(θ − 1), (1 − a)θ), and
then finding the density for Tn = U + V ∈ (θ + a − 1, θ + a) by convolution. Now for
θ − 1/2 < u/a − 1/2 < v/(1 − a) + 1/2 < θ + 1/2

Pr(U > u, V < v) = Pr(X(1) >
u

a
− 1

2
, X(n) <

v

(1 − a)
+

1

2
)

=

n
∏

i=1

Pr(
u

a
− 1

2
< Xi <

v

(1 − a)
+

1

2
)

=

(

v

(1 − a)
+

1

2
− u

a
+

1

2

)n

The joint density is then found as the negative derivative of the joint probability

fU,V (u, v) = − ∂2

∂u∂v
Pr(U > u, V < v)

=
n(n − 1)

a(1 − a)

(

v

(1 − a)
− u

a
+ 1

)n−2

1[θ<u/a<v/(1−a)+1<θ+1]

The density for Tn = U + V is thus (for θ + a − 1 < t < θ + a)

fT (t) = 1[θ+a−1<t<θ+a]

∫ ∞

−∞

fU,V (t − v, v)dv

= 1[θ+a−1<t<θ+a]

∫ Ht

Lt

n(n − 1)

a(1 − a)

(

v

(1 − a)
− t − v

a
+ 1

)n−2

dv

= n

(

Ht

a(1 − a)
− t

a
+ 1

)n−1

− n

(

Lt

a(1 − a)
− t

a
+ 1

)n−1

where the limits of integration Lt and Ht will be determined by the indicator function
in the formula for fU,V (t−v, v). We need to integrate over those values of v such that

θ <
t − v

a
<

v

1 − a
+ 1 < θ + 1,

which when taking each successive pair of terms dictates that

v < t − aθ

(1 − a)(t − a) < v

v < (1 − a)θ
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The lower limit of integration is thus clearly (1− a)t for all t ∈ (θ + a− 1, θ + a), and
we will have to consider cases for Ht. The upper limit will be t − aθ when

t − aθ < (1 − a)θ or t < θ,

and the upper limit will be (1−a)θ otherwise. Hence, defining sets A = (θ +a− 1, θ),
B = [θ, θ + a), and C = [θ + a,∞), we find the density for Tn as

fT (t) = n

(

t − θ

1 − a
+ 1

)n−1

1A(t) + n

(

θ − t

a
+ 1

)n−1

1B(t).

We then find the cumulative distribution function by integrating the density.

FT (t) =

∫ t

−∞

fT (y) dy

= (1 − a)

(

t − θ

1 − a
+ 1

)n

1A(t) +

(

1 − a

(

θ − t

a
+ 1

)n)

1B(t) + 1C(t)

Now we want to consider the distribution of Yn = n(Tn − θ).

Pr(n(T − θ) < y) = Pr(T <
y

n
+ θ)

= (1 − a)

(

y

n(1 − a)
+ 1

)n

1A(
y

n
+ θ)+

(

1 − a
(

− y

na
+ 1
)n)

1B(
y

n
+ θ) + 1C(

y

n
+ θ)

Taking the limit as n → ∞, we note that

1A(y/n + θ) → 1[y<0]

1B(y/n + θ) → 1[y≥0]

1C(y/n + θ) → 0
(

1 +
y

n(1 − a)

)n

→ ey/(1−a)

(

1 − y

na

)n

→ e−y/a

so
FYn

(y) → (1 − a)ey/(1−a)1[y<0] +
(

1 − ae−y/a
)

1[y≥0].

a. Now, for a = 1/2, we find that the asymptotic distribution for Yn is the double
exponential distribution

FYn
(y) → 1

2
e2y1[y<0] +

(

1 − 1

2
e−2y

)

1[y≥0].
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We can easily find that the density for this asymptotic distribution is

f(y) = e−2|y|,

and the mean and variance of this asymptotic distribution are 0 and 1/2, respec-
tively. Hence, the approximate asymptotic distribution of T = Y/n + θ will have
mean θ and variance 1/(2n2).

b. We now consider an estimator Xn which by the CLT is easily shown to be CAN
with approximate asymptotic distribution

Xn∼̇N
(

θ,
1

12n

)

.

Now for large n, the probability that Xn will be greater than r
√

12n units away
from θ is approximately

Pr(|Xn − θ| > r
√

12n)=̇2Φ (−r) ,

while by Chebyshev’s we know that the approximate distribution would suggest

Pr(|Tn − θ| > r
√

12n)<
1

24r2n3
.

Thus, for any fixed r, it is relatively easy to find n such that

1

24r2n3
<<< 2Φ (−r) .

Hence, by similar arguments, we prefer Tn to any CAN estimator in large samples.

c. The asymptotic distribution for the general case was found above.

Supplemental Problems

1. Let Yi, i = 1, . . . , n be independent exponential random variables with Yi ∼
E(log(2)/θ) (so FY (y) = 1 − exp(− log(2)y/θ) for 0 < y < ∞.

a. Find the parametric MLE of the median of the distribution of Yi. Derive its
asymptotic distribution.

Ans: The median of the exponential distribution is that value ω such that FY (ω) =
1− exp(− log(2)ω/θ) = 1/2. Straightforward substitution finds that ω = θ. Now,

we find the MLE θ̂

Li(θ) =
log(2)

θ
exp(− log(2)Yi/θ)

Li(θ) = − log(θ) − log(2)Yi

θ

Ui(θ) = −1

θ
+

log(2)Yi

θ2

U(θ) = −n

θ
+

log(2)nY

θ2
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Then, the score equation U(θ̂) = 0 dictates that θ̂ = log(2)Y . As this involves
the sample mean, the asymptotic distribution is easily found via the CLT and
Slutsky’s theorem (or the delta method), by noting that the mean and variance of
the exponential are θ/ log(2) and (θ/ log(2))2, respectively. Hence, the asymptotic
distribution of the sample mean is

√
n

(

Y − θ

log(2)

)

→d N
(

0,
θ2

log2(2)

)

,

and since θ̂ = Y log(2) √
n(θ̂ − θ) →d N (0, θ2).

b. Find the asymptotic distribution of the sample median.

Ans: For notational convenience, let θ̃ be the sample median. Now we know that the
asymptotic distribution for sample medians of continuous distributions is

√
n(θ̃ − θ) →d N

(

0,
1

4f2(θ)

)

.

For the exponential distribution, f(θ) = log(2)/(2θ), so we have

√
n(θ̃ − θ) →d N

(

0,
θ2

log2(2)

)

.

c. What is the asymptotic relative efficiency of the two estimators found in parts 1a
and 1b?

Ans: The asymptotic relative efficiency is the ratio of the variances of the asymptotic
distributions

e(θ̂, θ̃) = log2(2)=̇0.5,

so the parametric estimator is more efficient.

d. Now suppose that the true distribution of the independent Yi’s is as lognormal
Yi ∼ LN(µ, σ2), having density

fY (y) =
1√

2πσy
exp

(

− (log(y) − µ)2

2σ2

)

1[y>0].

Further suppose µ = log(θ). For what function of θ is the estimator you found
in part a consistent? What is the asymptotic distribution of the estimator from
part 1a under this new distribution for Y ?

Ans: For the lognormal distribution, E[Yi] = exp(µ+σ2/2) and V ar(Yi) = (exp(σ2)−
1) exp(2µ + σ2). By the CLT, we know therefore that

√
n
(

Y − exp(µ + σ2/2)
)

→d N
(

0, (exp(σ2) − 1) exp(2µ + σ2)
)

,
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and since θ̂ = Y log(2)

√
n
(

θ̂ − log(2) exp(µ + σ2/2)
)

→d N
(

0, log2(2)(exp(σ2) − 1) exp(2µ + σ2)
)

.

Immediately we see that θ̂ is consistent for log(2) exp(µ + σ2/2), which is only
the median of the distribution of Y if log(2) exp(σ2/2) = 1, since the median of
the lognormal distribution is exp(µ).

2. Let Yi, i = 1, . . . , n be independent lognormal random variables with Yi ∼
LN(log(θ), σ2).

a. Find the parametric MLE of the median of the distribution of Yi. Derive its
asymptotic distribution.

Ans: The parametric MLE in this case is the geometric mean

θ̌ = exp

(

1

n

n
∑

i=1

log(Yi)

)

.

The asymptotic distribution is easily found via the CLT for the log(Yi)’s (which
are normally distributed), and then using the delta method.

b. Find the asymptotic distribution of the sample median.

Ans: Use the asymptotic result in a manner analogous to the above problem.

c. What is the asymptotic relative efficiency of the two estimators found in parts 2a
and 2b?

d. Now suppose that the true distribution of the independent Yi’s is as exponential
Yi ∼ E(log(2)/θ) as in problem 1. For what function of θ is the estimator you
found in part 2a consistent? What is the asymptotic distribution of the estimator
from part 2a under this new distribution for Y ?

Ans: In this case, θ̌ will be consistent for the geometric mean of the exponential distri-
bution. The asymptotic distribution is found via the mean and variance for log
transformed exponential random variables.

3. Discuss the relative merits of using parametric versus nonparametric estimators rela-
tive to your results in problems 1 and 2.

Ans: In each case, the parametric estimators were most efficient. However, if we
were wrong about the true distribution of the data, neither parametric estimator
turned out to be consistent for the median. The nonparametric estimator was
“distribution-free”, in the sense that it was consistent for the median no matter
what the underlying distribution. So what do you want: efficiency or consis-
tency? If it is of paramount importance to estimate the median, it seems to me
that inference based on parametric estimation is treacherous.


