

Supplemental written problems due Friday, January 30, 2004 at the beginning of class.

1. Let $Y_i, i = 1, \dots, n$ be independent exponential random variables with $Y_i \sim \mathcal{E}(\log(2)/\theta)$ (so $F_Y(y) = 1 - \exp(-\log(2)y/\theta)$ for $0 < y < \infty$).
 - a. Find the parametric MLE of the median of the distribution of Y_i . Derive its asymptotic distribution.
 - b. Find the asymptotic distribution of the sample median.
 - c. What is the asymptotic relative efficiency of the two estimators found in parts 1a and 1b?
 - d. Now suppose that the true distribution of the independent Y_i 's is as lognormal $Y_i \sim LN(\mu, \sigma^2)$, having density

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma y} \exp\left(-\frac{(\log(y) - \mu)^2}{2\sigma^2}\right) \mathbf{1}_{[y>0]}.$$

Further suppose $\mu = \log(\theta)$. For what function of θ is the estimator you found in part a consistent? What is the asymptotic distribution of the estimator from part 1a under this new distribution for Y ?

2. Let $Y_i, i = 1, \dots, n$ be independent lognormal random variables with $Y_i \sim LN(\log(\theta), \sigma^2)$.
 - a. Find the parametric MLE of the median of the distribution of Y_i . Derive its asymptotic distribution.
 - b. Find the asymptotic distribution of the sample median.
 - c. What is the asymptotic relative efficiency of the two estimators found in parts 2a and 2b?
 - d. Now suppose that the true distribution of the independent Y_i 's is as exponential $Y_i \sim \mathcal{E}(\log(2)/\theta)$ as in problem 1. For what function of θ is the estimator you found in part 2a consistent? What is the asymptotic distribution of the estimator from part 2a under this new distribution for Y ?
3. Discuss the relative merits of using parametric versus nonparametric estimators relative to your results in problems 1 and 2.