
Stat 513
HW 2 Solutions

January 30, 2004

• 1.
Let Y1, ..., Yn

iid∼ B(1, pi) with

logit (pi) = log

(

pi

1 − pi

)

= β0 + β1xi

for known covariate xi.
Use a Newton-Raphson algorithm to find the MLE’s for β0 and β1, providing the value of the
loglikelihood, score, Fisher’s information, and updated estimates at each iteration using initial
estimates of β̂0(0) = logit(Y ) and β̂1(0) = 0.

For simplicity, let xiβ = β0 + β1xi

Recall that:

Likelihood ⇒
n∏

i=1

e(xiβ)yi

1 + exiβ

Log-likelihood ⇒
n∑

i=1

[

(xiβ)yi − ln(1 + exiβ)
]

Score: β0 ⇒
n∑

i=1

[

yi −
1

(1 + exiβ)
exiβ

]

β1 ⇒
n∑

i=1

[

xiyi −
xi

(1 + exiβ)
exiβ

]

• 2.
Let Y1, ..., Yn be independent, Normally distributed with Yi ∼ N(µi, σ

2), where µi = β0 + β1xi.

(a) Find formulas for the MLE’s and covariance matix of those estimates. What is the distrib-
ution of the estimates? Are they unbiased? Consistent? Efficient?
MLE’s:

X =









1 x1

1 x2
...

...
1 xn








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L(β, σ2) = (2πσ2)−n/2e−
1

2σ2
(Y −Xβ)′(Y −Xβ)

L(β, σ2) = −n

2
log(σ2) − (Y − Xβ)′(Y − Xβ)

2σ2

U(β) =
X ′(Y − Xβ)

σ2

=
X ′X

σ2
((X ′X)−1X ′Y − β)

U(σ2) = − n

2σ2
+

RSS

2σ4

= − n

2σ4
(
RSS

n
− σ2)

I(β) =
X ′X

σ2

I(σ2) =
n

2σ4

I(β, σ2) =
1

σ2

(

X ′X 0
0 n

2σ2

)

Since second partials have expectation zero

Formulas for MLE’s:

β̂ = (X ′X)−1X ′Y

σ̂2 =
RSS

n

Now the normal is regular, and we can put both scores in nice form, so we know we have
consistency, and asymptotic distribution based on information. We now check unbiasedness
and show that β̂ is efficient because the variance is equal to the inverse information:

E(β̂) = E((X ′X)−1X ′Y )

= (X ′X)−1X ′Xβ

= β

V ar(β̂) = V ar((X ′X)−1X ′Y )

= (X ′X)−1X ′V ar(Y )X(X ′X)−1

= σ2(X ′X)−1

E(σ̂2) = E(
RSS

n
)

=
1

n
E[(Y − Xβ̂)′(Y − Xβ̂)]

=
(n − 2)σ2

n
So σ̂2 is not unbiased

(b) Now suppose that all is known is E[Yi] = µi = β0 + β1xi and V ar(Yi) = σ2. Discuss
issues in finding the asymptotic distribution of β. Our previous claims of unbiasedness had
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nothing to do with the specific distribution of Y, just expectation and variance. Therefore,
our inference is still true if we can apply a Linderberg-Feller condition to use the CLT and
asymptotic distribution holds.

• 3.
Let T1, ..., Tn

iid∼ Weib(ρ, λ) where Pr(Ti > t) = e−(λt)ρ

is the survivor function for t, ρ, λ > 0.
Also let Ci ∼ U(a, b) denote the censoring distribution where each Ci is independent of each
other and of each Ti. Define Yi = min(Ti, Ci) as the obesrvation time for individual i, and
δi = 1[Yi=Ti] is the indicator that Yi is an observed failure time (as opposed to other censoring).
Derive formulas for the MLE’s of θ = (ρ, λ), and find their asymptotic distribution. Then find
the MLE of the probability a subject surviving 5 years, and its asymptoic distribution.
This problem mirrors closely to the example using an exponential distribution in class.

Weib(λ, ρ) = ρλρxρ−1e−(λx)ρ

⇒ L(λ, ρ) =
n∏

i=1

[

ρλρt
ρ−1
i

]δi
[

e−(λti)
ρ
]1−δi

[1 − FCi
(ti)]

δi [fCi
(ti)]

1−δi

L(λ, ρ) =
n∑

i=1

δi [ln(ρ) + ρln(λ) + (ρ − 1)ln(ti)] − (λti)
ρ + schtuff

Formulas for MLE’s: U(λ) =
n∑

i=1

δiρ − ρ(λti)
ρ

λ

U(ρ) =
n∑

i=1

δi

ρ
+ δi [ln(λ) + ln(ti)] − (λti)

ρln(λti)

Asymptotic distribution: √
n(θ̂ − θ)→

d
N(0, I−1(θ))

so we need to calculate I(θ). Note: Since θ is a vector of length 2, I(θ) will be a 2x2 matrix.

I11(θ) = E

(
n∑

i=1

δi

ρ2
+ (λti)

ρ(ln(λti))
2

)

I12(θ) = I21(θ) = E

(
n∑

i=1

δi

λ
+ λρ−1t

ρ
i − ρλρ−1t

ρ
i ln(λti)

)

I22(θ) = E

(
n∑

i=1

δiρ + ρ(ρ − 1)(λti)
ρ

λ2

)

Now we need to find the MLE of the probability of surviving 5 years, and it’s asymptotic dis-
tribution. We’re given the survivor function, and since t is measured in years, we just need to
plug-in t = 5 (and use the invariance property of MLE’s).

Pr(Ti > 5) = e−(λ5)ρ
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MLE ⇒ e−(λ̂5)ρ̂

For the asymptotic distribution, use the delta method where g(θ) = e−(λ5)ρ

.

∇g1(θ) =
dg(θ)

dρ
= −e−(λ5)ρ

(5λ)ρln(5λ)

∇g2(θ) =
dg(θ)

dλ
= −e−(λ5)ρ

ρ5ρλρ−1

Resulting in the asymptotic distribution:

√
n(e−(λ̂5)ρ̂ − e−(λ5)ρ

)→
d

N(0,∇g′(θ)I−1(θ)∇g(θ))

• 4.
Let θ̂ be the maximum likelihood estimate of θ from iid r.v.’s X1, ..., Xn satisfying regularity
conditions. Let I1(θ) denote the contribution to Fisher’s information from a single observation.
Thus we have √

n(θ̂ − θ)−→
d

N(0, I−1
1 (θ))

and the MLE attains the CR-LB. Show that the MLE for g(θ) has an asymptotic distribution
which acheives the CR-LB.
First we need the MLE for g(θ), which is just g(θ̂) by the invariance property of MLE’s.
Now pile on the δ-method to that and we have:

√
n(g(θ̂) − g(θ)) →

d
g′(θ)N(0, I−1

1 (θ))

→
d

N(0,∇g′(θ)I−1
1 (θ)∇g(θ))

Note that the variance in the equation above is exactly that of the CR-LB for an unbiased func-
tion of g(θ). So while in small samples, g(θ̂) won’t attain the lower bound, for large samples
(asymptotically) it will converge to it. Yeehaw.
(When θ is of dimension 1, we’d just have g′(θ)2I−1

1 )

• 5.
The fish fry problem.

(a) Suppose a homozygous black male and homozygous red male are placed with a homozygous
red female. Let N denote the total number of fry, and X denote the total number that
were sired by the black male, and Y denote the total number of black fry (In this instance
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X = Y , part (b) will be different though). Find an estimate for the probability p that the
black male sires a fry and derive the asymptotic distribution for the estimate.

Since the only way for a fry to be black is to be sired by the black male, and every single
fry sired by the black male would be black, we can just count the number of black fry and
divide by the total number of fry. From the set-up, this would be exactly X

N
. Now we also

know the distribution of this estimate since the random variable is Binomial.

X

N

.∼ N

(

p,
p(1 − p)

N

)

(b) Now suppose the scenario of part (a) but with a hetrozygous black male (hence, X 6= Y ).
Assume that conditional upon the value of X, Y |X ∼ B(X, 0.5). Again find an estimate
for p and find the asymptotic distribution for this estimate.

Now again the only way for a fry to be black is to be sired by the black male, but only half
of the fry sired by the black male are black. Thus, if we count the number of black fry, we’ll
still be missing half of the fry that the black male sired (since it’s a 50/50 chance when the
black male is heterozygous). But then all we need to do is double the number of black fry
we see, so our estimate is 2Y

N
. Now we need to figure out what the distribution of Y is.

We know by conditional probability that

pY (y) = pY |X(y|x) · pX(x)

Then to get rid of the X’s, we just sum over all possibilities.

pY (y) =
N∑

x=0

Pr(Y = k|X = x)
︸ ︷︷ ︸

B(X,0.5)

·P (X = x)
︸ ︷︷ ︸

B(N, X
N

)

=
N∑

x=0

x!

(x − k)!x!

(
1

2

)k (1

2

)x−k

1[0,x](k) · N !

x!(N − x)!
px(1 − p)N−x

=
N∑

x=0

x!

x!(x − k)!

(
1

2

)x

1[k,N ](x) · N !

x!(N − x)!
px(1 − p)N−x

=
N∑

x=k

N !

(x − k)!k!(N − x)!

(
p

2

)x

(1 − p)N−x

Now this is looking sorta like the form of a binomial random variable, so let’s try to make
it look that way and set u = x − k.

=
N−k∑

u=0

N !

(u + k − k)!k!(N − u − k)!

(
p

2

)u+k

(1 − p)N−u−k
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=
N !

(N − k)!k!

(
p

2

)k N−k∑

u=0

N !

(N − k − u)!u!

(
p

2

)u

(1 − p)N−k−u

Notice the second half of this expression is the Binomial theorem and thus is ( p
2
+1−p)N−k =

(1− p
2
)N−k and this gives the form of a B(N, p

2
) overall for the distribution for Y . Thus for

our estimate:

2Y

N

.∼ N

(

p,
4p
2
(1 − p

2
)

N

)

(c) Find the asymptotic relative efficiency (ARE) of the estimate derived in part (a) compared
to that of part (b). Interpret the results in regard to the importance of knowing the geno-
type of the males.
Using the asymptotic distribution results from parts (a) and (b):

ARE =
p(1−p)

N
4p

2
(1− p

2
)

N

=
p(1 − p)

p(2 − p)
=

1 − p

2 − p

The ’importance’ of knowing the genotype of the males will depend on p, although, since
this ratio is monotone over all possible values of p (0 to 1), we know that the largest value
is at p=0 where the ARE is 1/2.
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