

• 7.3.8

Let $f_1(x)$ and $f_2(x)$ be p.d.f's with known means μ_1 and μ_2 respectively. Consider the following contaminated p.d.f. for $0 \leq \theta \leq 1$

$$f(x|\theta) = \theta f_1(x) + (1 - \theta) f_2(x)$$

Let X_1, \dots, X_n be a sample from $f(x|\theta)$, find the MME of θ .

$$\begin{aligned} \bar{X} = E(f(x|\theta)) &= \theta E(f_1(x)) + (1 - \theta) E(f_2(x)) = \theta\mu_1 + (1 - \theta)\mu_2 = \theta(\mu_1 - \mu_2) + \mu_2 \\ \Rightarrow \frac{\bar{X} - \mu_2}{\mu_1 - \mu_2} &= \tilde{\theta} \end{aligned}$$

• 7.3.11

Let X_1, \dots, X_n be sample from p.d.f. $f(x|\theta) = \left(\frac{\theta}{x^2}\right) 1_{[\theta, \infty)}(x)$ for some $\theta > 0$. Find the MME for θ .

First we need to know what the expectation for this p.d.f. is.

$$E(x|\theta) = \int_{\theta}^{\infty} x \cdot \frac{\theta}{x^2} dx = \theta \ln(x)|_{\theta}^{\infty} \Rightarrow \text{undefined}$$

Note: All k moments for $k \geq 1$ do not exist (convience yourself of this, just write out $E(X^2)$ and $E(X^3)$). Thus a method of moments estimator does not exist. Some people tried a "half-moment" estimator, but method of moments estimators were defined for k being an integer greater than or equal to 1.

• 7.5.1

Let X_1, \dots, X_n iid $B(1, p)$, and let $T_n = X_1 + \dots + X_n$ and $\hat{p}_n = \frac{T_n}{n}$.

(a) Show \hat{p}_n is a "BRUE" for p .

There are *two* parts to this, unbiasedness, and minimum variance.

Unbiased:

$$E(\hat{p}_n) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \frac{np}{n} = p$$

Minimum Variance:

$$\begin{aligned}
Var(\hat{p}_n) &= \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n} \\
L_i(p) &= p^x(1-p)^{1-x} \\
\mathcal{L}_i(p) &= x \ln(p) + (1-x) \ln(1-p) \\
\mathcal{U}_i(p) &= \frac{x}{p} - \frac{1-x}{1-p} \\
I_i(p) &= -E\left(-\frac{x}{p^2} - \frac{1-x}{(1-p)^2}\right) = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)} \\
\text{Since we have iid } X_i \text{'s } I_n(p) &= \frac{n}{p(1-p)} \\
\Rightarrow Var(\hat{p}_n) &\geq \frac{[1]^2}{\frac{n}{p(1-p)}} = \frac{p(1-p)}{n} \Rightarrow \hat{p}_n \text{ is the BRUE}
\end{aligned}$$

(b) Show $T_n(n - T_n)(n - 1 - T_n)/d_n$ is unbiased for pq^2 and find the CR-LB for this where $d_n = n(n - 1)(n - 2)$.

Unbiasedness:

This is basically just algebra:

$$E\left(\frac{T_n(n - T_n)(n - 1 - T_n)}{n(n - 1)(n - 2)}\right) = \frac{1}{d_n}[n(n - 1)E(T_n) + (1 - 2n)E(T_n^2) + E(T_n^3)]$$

From previous homework #3 in Stat 512:

$$\begin{aligned}
E(T_n) &= np \\
E(T_n^2) &= (np)^2 + np(1-p) \\
E(T_n^3) &= n(n-1)(n-2)p^3 + 3n(n-1)p^2 + np \\
\text{Substitute in with algebra} \Rightarrow & \frac{n(n-1)(n-2)(p^3 - 2p^2 + p)}{d_n} \\
&= p(1-p)^2 = pq^2
\end{aligned}$$

CR-LB:

This is the new part.

Note: pq^2 is a function of p . Let $g(p) = p(1-p)^2 = p - 2p^2 + p^3$. Then $g'(p) = 1 - 4p + 3p^2$. Now using previous results from part (a) and letting T_n^b denote the estimator of pq^2 from

above:

$$Var(T_n^b) \geq \frac{[g'(p)]^2}{I_n(p)} = \frac{[1 - 4p + 3p^2]^2}{\frac{n}{p(1-p)}} = \frac{[1 - 4p + 3p^2]^2 p(1-p)}{n}$$

(c) Show that $T_n(n - T_n)/(n(n - 1))$ is unbiased for pq and has LARGER variance than the MLE $\hat{p}\hat{q}$.

Unbiasedness:

$$\begin{aligned} E\left[\frac{T_n(n - T_n)}{n(n - 1)}\right] &= \frac{1}{n(n - 1)} E[nT_n - T_n^2] \\ &= \frac{1}{n(n - 1)} (nE[T_n] - Var[T_n] - (E[T_n])^2) \\ &= \frac{(n^2p - np(1 - p) - n^2p^2)}{n(n - 1)} = \frac{np - np^2 - p + p^2}{(n - 1)} \\ &= \frac{(n - 1)(p - p^2)}{(n - 1)} = p(1 - p) = pq \end{aligned}$$

Variance:

$$\begin{aligned} \hat{p}\hat{q} &= \frac{T_n}{n}\left(1 - \frac{T_n}{n}\right) \text{ by invariance of MLE's} \\ Var(\hat{p}\hat{q}) = Var\left[\frac{1}{n^2}T_n(n - T_n)\right] &= \frac{1}{n^4}Var[T_n(n - T_n)] \\ Var\left[\frac{1}{n(n - 1)}T_n(n - T_n)\right] &= \frac{1}{n^2(n - 1)^2}Var[T_n(n - T_n)] \end{aligned}$$

Now since $\frac{1}{n^4} < \frac{1}{n^2(n-1)^2}$, the MLE has a smaller variance.

• 7.5.2

(a) Let X_1, \dots, X_n iid $N(\mu, 1)$, and T_{1n} be the MLE of μ^2 and T_{2n} be an unbiased estimator of μ^2 . Calculate the CR-LB for each and compare using consistency and unbiasedness.

Recall that the mle of μ is \bar{X} , so by invariance of MLE, the MLE of μ^2 is \bar{X}^2 . Also, many people specified a specific unbiased estimator for T_{2n} , but the CR-LB holds for every unbiased estimator.

$$L(\mu) = \prod_{i=1}^n (2\pi)^{-n/2} e^{-\frac{1}{2}(x_i - \mu)^2}$$

$$\begin{aligned}
\mathcal{L}_i(\mu) &= -\frac{1}{2}(x_i - \mu)^2 - \frac{n}{2} \log(2\pi) \\
\mathcal{U}_i(\mu) &= (x_i - \mu) \\
I_i(\mu) &= 1 \\
E(T_{1n}) &= E(\bar{X}^2) = Var(\bar{X}) + E(\bar{X})^2 \\
&= \frac{1}{n} + \mu^2 \\
bias(T_{1n}) &= E(T_{1n}) - \mu^2 = \frac{1}{n} \\
b'(T_{1n}) &= 0 \\
bias(T_{2n}) &= 0 \text{ by assumption} \\
g(\mu) &= \mu^2 \\
g'(\mu) &= 2\mu \text{ for both T}
\end{aligned}$$

So the CR-LB for both T_{1n} and T_{2n} is $\frac{4\mu^2}{n}$. The decision whether to use T_{1n} or T_{2n} depends entirely upon the variance of T_{2n} . The no-brainer is to subtract off the bias from T_{1n} and use that as your estimator.

(b) Find CR-LB for the unbiased estimator of $P(X > 2\mu)$.

$$\begin{aligned}
P(X > 2\mu) &= P(X - \mu > \mu) \\
&= P(Z > \mu), Z \sim N(0, 1) \\
&= \Phi(\mu) \\
g(\mu) &= \Phi(\mu) \\
g'(\mu) &= \phi(\mu) \\
&= (2\pi)^{-1/2} e^{-\frac{\mu^2}{2}} \\
Var(T) &\geq \frac{[g'(\mu)]^2}{n} \\
&= \frac{e^{-\mu^2}}{2\pi n}
\end{aligned}$$

• 7.5.3

Let X_1, \dots, X_n iid $\Gamma(\alpha, \lambda)$, T_1 be an unbiased estimator of α with λ known, and T_2 be an unbiased estimator of λ with α known. Find the CR-LB for $Var(T_1)$ and $Var(T_2)$. Is either estimator 'BRUE'?

$$L_i(\alpha, \lambda) = \frac{1}{\lambda^{\alpha+1} \Gamma(\alpha+1)} x_i^\alpha e^{-x_i/\lambda}$$

$$\begin{aligned}
\mathcal{L}_i(\alpha, \lambda) &= -(\alpha + 1) \log(\lambda) - \log(\Gamma(\alpha + 1)) + \alpha \log(x_i) - \frac{x_i}{\lambda} \\
\mathcal{U}_i(\alpha|\lambda) &= -\log \lambda - \Psi(\alpha + 1) + \log(x_i) \\
&\quad \text{Where } \Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} \\
I(\alpha|\lambda) &= E(-\Psi'(\alpha + 1)) = -\Psi'(\alpha + 1) \\
\mathcal{U}_i(\lambda|\alpha) &= -\frac{\alpha + 1}{\lambda} + \frac{x_i}{\lambda^2} \\
&= \frac{\alpha + 1}{\lambda^2} \left(\frac{x_i}{\alpha + 1} - \lambda \right) \\
I(\lambda|\alpha) &= E\left(-\frac{\alpha + 1}{\lambda^2} + \frac{2x_i}{\lambda^3}\right) \\
&= \frac{2\alpha}{\lambda^2} - \frac{\alpha + 1}{\lambda^2} \\
&= \frac{\alpha - 1}{\lambda^2}
\end{aligned}$$

Notice that we could put the score function in the form $A(\lambda)(T_2(X) - \lambda)$ for $T_2 = \frac{\bar{X}}{\alpha+1}$, so it is BRUE. We cannot change the digamma into that form, so no T_1 is BRUE. The CR-LB for T_1 is $\frac{-1}{\Psi'(\alpha+1)}$, and the CR-LB for T_2 is $\frac{\lambda^2}{\alpha-1}$.

• 7.5.7

Let X_1, \dots, X_n iid $Pois(\lambda)$ and $T_n = (\bar{X})^2 - \bar{X}$. Find the lower bound for $E(T_n - \lambda^2)^2$, then find a function $g(T_n)$ that is unbiased for λ^2 and find the lower bound for this $g(T_n)$.

$$\begin{aligned}
E(T_n) &= E(\bar{X}^2) - E(\bar{X}) \\
&= Var(\bar{X}) + E(\bar{X})^2 - E(\bar{X}) \\
&= \frac{\lambda}{n} + \lambda^2 - \lambda \\
&= \lambda^2 - \frac{n-1}{n}\lambda \\
E(T_n - \lambda^2)^2 &= MSE(T_n) \\
&= Var(T_n) + b^2(T_n) \\
bias(T_n) &= -\frac{n-1}{n}\lambda \\
b'(\lambda) &= -\frac{n-1}{n} \\
g(\lambda) &= \lambda^2 \\
g'(\lambda) &= 2\lambda \\
I(\lambda) &= \frac{1}{\lambda} \text{ by Ex 7.5.6} \\
Var(T_n) &\geq \frac{\lambda(2\lambda - \frac{n-1}{n})^2}{n}
\end{aligned}$$

$$MSE(T_n) \geq \frac{\lambda(2\lambda - \frac{n-1}{n})^2}{n} + \frac{\lambda^2(n-1)^2}{n^2}$$

- 7.5.10

Let X_1, \dots, X_n iid $N(\mu, \sigma^2)$ with both μ and σ^2 known. Three possible estimators for σ^2 are:

$$t_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{(n-1)} = s^2, \quad t_2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n} = \hat{\sigma}^2, \quad t_3 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{(n+1)}$$

Compare with respect to bias, variance, and mean squared error.

Bias:

$$\begin{aligned} E(t_1) &= \sigma^2 \quad (\text{done in previous homework}) \Rightarrow b(t_1) = 0 \\ E(t_2) &= \frac{n-1}{n} \cdot E(t_1) = \frac{n-1}{n} \sigma^2 \Rightarrow b(t_2) = -\frac{1}{n} \sigma^2 \\ E(t_3) &= \frac{n-1}{n+1} \cdot E(t_1) = \frac{n-1}{n+1} \sigma^2 \Rightarrow b(t_3) = -\frac{2}{n+1} \sigma^2 \end{aligned}$$

Variance:

Note: Since the X_i 's are normal, $(n-1)s^2/\sigma^2 \sim \chi_{n-1}^2 = \Gamma(\frac{n-1}{2}, 2)$.

Thus,

$$\begin{aligned} \left(\frac{n-1}{\sigma^2}\right)^2 Var(s^2) &= 2(n-1) \quad (\text{since } Var(\Gamma(a, b)) = ab^2) \\ \Rightarrow Var(s^2) &= 2(n-1) \frac{\sigma^4}{(n-1)^2} = \frac{2\sigma^4}{(n-1)} \end{aligned}$$

$$\begin{aligned} Var(t_1) &= Var(s^2) = \frac{1}{(n-1)} 2\sigma^4 \\ Var(t_2) &= \left(\frac{n-1}{n}\right)^2 Var(s^2) = \frac{(n-1)}{n^2} 2\sigma^4 \\ Var(t_3) &= \left(\frac{n-1}{n+1}\right)^2 Var(s^2) = \frac{(n-1)}{(n+1)^2} 2\sigma^4 \end{aligned}$$

Mean Squared Error:

$$MSE(t_1) = \frac{1}{(n-1)} 2\sigma^4 + 0 = \frac{2}{(n-1)} \sigma^4$$

$$\begin{aligned}
MSE(t_2) &= \frac{(n-1)}{n^2} 2\sigma^4 + \left(-\frac{1}{n}\sigma^2\right)^2 = \frac{2n-1}{n^2}\sigma^4 \\
MSE(t_3) &= \frac{(n-1)}{(n+1)^2} 2\sigma^4 + \left(-\frac{2}{n+1}\sigma^2\right)^2 = \frac{2}{n+1}\sigma^4
\end{aligned}$$

Moral of the story: There are instances where you can beat an unbiased estimator in MSE with a bias one. Thus, while it seems like a good idea to look at unbiased estimators, they aren't necessarily the only estimators that are reasonable for a given situation. Also, MLE's aren't always the best idea for an estimator either (t_2 was the MLE and wasn't the best in anything).

- Supplemental Problem

Let Y_1, \dots, Y_n iid $B(1, p_i)$ with

$$\text{logit } (p_i) = \log \left(\frac{p_i}{1-p_i} \right) = \beta_0 + \beta_1 x_i$$

for known covariate x_i . For simplicity, let $x_i\beta = \beta_0 + \beta_1 x_i$

Note:

$$\frac{p_i}{1-p_i} = e^{x_i\beta} \implies p_i = \frac{e^{x_i\beta}}{1+e^{x_i\beta}}$$

(i) Likelihood:

$$\begin{aligned}
L(\beta) &= \prod_{i=1}^n p_i^{y_i} (1-p_i)^{1-y_i} = \prod_{i=1}^n \left(\frac{p_i}{1-p_i} \right)^{y_i} (1-p_i) \\
\text{substitute in for } p_i &\Rightarrow \prod_{i=1}^n \frac{e^{(x_i\beta)y_i}}{1+e^{x_i\beta}}
\end{aligned}$$

(ii) Log-likelihood:

$$\mathcal{L}(\beta) = \sum_{i=1}^n \left[(x_i\beta)y_i - \ln(1+e^{x_i\beta}) \right]$$

(iii) Score:

$$\begin{aligned}
\beta_0 &\Rightarrow \sum_{i=1}^n \left[y_i - \frac{1}{(1+e^{x_i\beta})} e^{x_i\beta} \right] \\
\beta_1 &\Rightarrow \sum_{i=1}^n \left[x_i y_i - \frac{x_i}{(1+e^{x_i\beta})} e^{x_i\beta} \right]
\end{aligned}$$

(iv) Fisher's information:

Four parts here for a 2x2 information matrix.

$$\begin{aligned}-E\left(\frac{d \text{ score}(\beta_0)}{d \beta_0}\right) &= \sum_{i=1}^n \frac{e^{-x_i \beta}}{(1 + e^{-x_i \beta})^2} \\-E\left(\frac{d \text{ score}(\beta_0)}{d \beta_1}\right) &= -E\left(\frac{d \text{ score}(\beta_1)}{d \beta_0}\right) = \sum_{i=1}^n \frac{x_i e^{-x_i \beta}}{(1 + e^{-x_i \beta})^2} \\-E\left(\frac{d \text{ score}(\beta_1)}{d \beta_1}\right) &= \sum_{i=1}^n \frac{x_i^2 e^{-x_i \beta}}{(1 + e^{-x_i \beta})^2}\end{aligned}$$