
Stat 513
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January 30, 2004

• 7.3.8
Let f1(x) and f2(x) be p.d.f’s with known means µ1 and µ2 respectively. Consider the following
contaminated p.d.f. for 0 ≤ θ ≤ 1

f(x|θ) = θf1(x) + (1 − θ)f2(x)

Let X1, ..., Xn be a sample from f(x|θ), find the MME of θ.

X = E(f(x|θ)) = θE(f1(x)) + (1 − θ)E(f2(x)) = θµ1 + (1 − θ)µ2 = θ(µ1 − µ2) + µ2

⇒
X − µ2

µ1 − µ2
= θ̃

• 7.3.11
Let X1, ..., Xn be sample from p.d.f. f(x|θ) =

(

θ
x2

)

1[θ,∞)(x) for some θ > 0. Find the MME for
θ.
First we need to know what the expectation for this p.d.f. is.

E(x|θ) =
∫

∞

θ
x ·

θ

x2
dx = θln(x)|∞θ ⇒ undefined

Note: All k moments for k ≥ 1 do not exist (convience yourself of this, just write out E(X 2)
and E(X3)). Thus a method of moments estimator does not exist. Some people tried a ”half-
moment” estimator, but method of moments estimators were defined for k being an integer
greater than or equal to 1.

• 7.5.1
Let X1, ..., Xn iid B(1, p), and let Tn = X1 + ... + Xn and p̂n = Tn

n
.

(a) Show p̂n is a ”BRUE” for p.
There are *two* parts to this, unbiasedness, and minimum variance.
Unbiased:

E(p̂n) =
1

n

n
∑

i=1

E(Xi) =
np

n
= p
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Minimum Variance:

V ar(p̂n) =
1

n2

n
∑

i=1

V ar(Xi) =
np(1 − p)

n2
=

p(1 − p)

n

Li(p) = px(1 − p)1−x

Li(p) = xln(p) + (1 − x)ln(1 − p)

Ui(p) =
x

p
−

1 − x

1 − p

Ii(p) = −E

(

−
x

p2
−

1 − x

(1 − p)2

)

=
1

p
+

1

1 − p
=

1

p(1 − p)

Since we have iid Xi’s In(p) =
n

p(1 − p)

⇒ V ar(p̂n) ≥
[1]2

n
p(1−p)

=
p(1 − p)

n
⇒ p̂n is the BRUE

(b) Show Tn(n − Tn)(n − 1 − Tn)/dn is unbiased for pq2 and find the CR-LB for this where
dn = n(n − 1)(n − 2).

Unbiasedness:
This is basically just algebra:

E

(

Tn(n − Tn)(n − 1 − Tn)

n(n − 1)(n − 2)

)

=
1

dn
[n(n − 1)E(Tn) + (1 − 2n)E(T 2

n) + E(T 3
n)]

From previous homework #3 in Stat 512:

E(Tn) = np

E(T 2
n) = (np)2 + np(1 − p)

E(T 3
n) = n(n − 1)(n − 2)p3 + 3n(n − 1)p2 + np

Substitute in with algebra ⇒
n(n − 1)(n − 2)(p3 − 2p2 + p)

dn

= p(1 − p)2 = pq2

CR-LB:
This is the new part.
Note: pq2 is a function of p. Let g(p) = p(1− p)2 = p− 2p2 + p3. Then g′(p) = 1− 4p + 3p2

Now using previous results from part (a) and letting T b
n denote the estimator of pq2 from
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above:

V ar(T b
n) ≥

[g′(p)]2

In(p)
=

[1 − 4p + 3p2]2

n
p(1−p)

=
[1 − 4p + 3p2]2p(1 − p)

n

(c) Show that Tn(n − Tn)/(n(n − 1)) is unbiased for pq and has LARGER variance than the
MLE p̂q̂.
Unbiasedness:

E

[

Tn(n − Tn)

n(n − 1)

]

=
1

n(n − 1)
E[nTn − T 2

n ]

=
1

n(n − 1)

(

nE[Tn] − V ar[Tn] − (E[Tn])2
)

=
(n2p − np(1 − p) − n2p2)

n(n − 1)
=

np − np2 − p + p2

(n − 1)

=
(n − 1)(p − p2)

(n − 1)
= p(1 − p) = pq

Variance:

p̂q̂ =
Tn

n
(1 −

Tn

n
) by invariance of MLE’s

V ar(p̂q̂) = V ar[
1

n2
Tn(n − Tn)] =

1

n4
V ar[Tn(n − Tn)]

V ar[
1

n(n − 1)
Tn(n − Tn)] =

1

n2(n − 1)2
V ar[Tn(n − Tn)]

Now since 1
n4 < 1

n2(n−1)2
, the MLE has a smaller variance.

• 7.5.2

(a) Let X1, ..., Xn iid N(µ, 1), and T1n be the MLE of µ2 and T2n be an unbiased estimator of
µ2. Calculate the CR-LB for each and compare using consistency and unbiasedness.

Recall that the mle of µ is X, so by invariance of MLE, the MLE of µ2 is X
2
. Also,

many people specified a specific unbiased estimator for T2n, but the CR-LB holds for every
unbiased estimator.

L(µ) =
n
∏

i=1

(2π)−n/2e−
1

2
(xi−µ)2
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Li(µ) = −
1

2
(xi − µ)2 −

n

2
log(2π)

Ui(µ) = (xi − µ)

Ii(µ) = 1

E(T1n) = E(X
2
) = V ar(X) + E(X)2

=
1

n
+ µ2

bias(T1n) = E(T1n) − µ2 =
1

n
b′(T1n) = 0

bias(T2n) = 0 by assumption

g(µ) = µ2

g′(µ) = 2µ for both T

So the CR-LB for both T1n and T2n is 4µ2

n
. The decision whether to use T1n or T2n depends

entirely upon the variance of T2n. The no-brainer is to subtract off the bias from T1n and
use that as your estimator.

(b) Find CR-LB for the unbiased estimator of P (X > 2µ).

P (X > 2µ) = P (X − µ > µ)

= P (Z > µ) , Z ∼ N(0, 1)

= Φ(µ)

g(µ) = Φ(µ)

g′(µ) = φ(µ)

= (2π)−1/2e−
µ2

2

V ar(T ) ≥
[g′(µ)]2

n

=
e−µ2

2πn

• 7.5.3
Let X1, ..., Xn iid Γ(α, λ), T1 be an unbiased estimator of α with λ known, and T2 be an
unbiased estimator of λ with α known. Find the CR-LB for V ar(T1) and V ar(T2). Is either
estimator ’BRUE’?

Li(α, λ) =
1

λα+1Γ(α + 1)
xα

i e−xi/λ
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Li(α, λ) = −(α + 1) log(λ) − log(Γ(α + 1)) + α log(xi) −
xi

λ
Ui(α|λ) = − log λ − Ψ(α + 1) + log(xi)

Where Ψ(x) = Γ′(x)
Γ(x)

I(α|λ) = E(−Ψ′(α + 1)) = −Ψ′(α + 1)

Ui(λ|α) = −
α + 1

λ
+

xi

λ2

=
α + 1

λ2
(

xi

α + 1
− λ)

I(λ|α) = E(−
α + 1

λ2
+

2xi

λ3
)

=
2α

λ2
−

α + 1

λ2

=
α − 1

λ2

Notice that we could put the score function in the form A(λ)(T2(X) − λ) for T2 = X
α+1

, so it is
BRUE. We cannot change the digamma into that form, so no T1 is BRUE. The CR-LB for T1 is

−1
Ψ′(α+1)

, and the CR-LB for T2 is λ2

α−1
.

• 7.5.7
Let X1, ..., Xn iid Pois(λ) and Tn = (X)2 −X. Find the lower bound for E(Tn − λ2)2, then find
a function g(Tn) that is unbiased for λ2 and find the lower bound for this g(Tn).

E(Tn) = E(X
2
) − E(X)

= V ar(X) + E(X)2 − E(X)

=
λ

n
+ λ2 − λ

= λ2 −
n − 1

n
λ

E(Tn − λ2)2 = MSE(Tn)

= V ar(Tn) + b2(Tn)

bias(Tn) = −
n − 1

n
λ

b′(λ) = −
n − 1

n
g(λ) = λ2

g′(λ) = 2λ

I(λ) =
1

λ
by Ex 7.5.6

V ar(Tn) ≥
λ(2λ − n−1

n
)2

n
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MSE(Tn) ≥
λ(2λ − n−1

n
)2

n
+

λ2(n − 1)2

n2

• 7.5.10
Let X1, ..., Xn iid N(µ, σ2) with both µ and σ2 known. Three possible esimators for σ2 are:

t1 =

∑n
i=1(Xi − X̄)2

(n − 1)
= s2, t2 =

∑n
i=1(Xi − X̄)2

n
= σ̂2, t3 =

∑n
i=1(Xi − X̄)2

(n + 1)

Compare with respect to bias, variance, and mean squared error.
Bias:

E(t1) = σ2 (done in previous homework) ⇒ b(t1) = 0

E(t2) =
n − 1

n
· E(t1) =

n − 1

n
σ2 ⇒ b(t2) = −

1

n
σ2

E(t3) =
n − 1

n + 1
· E(t1) =

n − 1

n + 1
σ2 ⇒ b(t3) = −

2

n + 1
σ2

Variance:
Note: Since the Xi’s are normal, (n − 1)s2/σ2 ∼ χ2

n−1 = Γ(n−1
2

, 2).
Thus,

(

n − 1

σ2

)2

V ar(s2) = 2(n − 1) (since V ar(Γ(a, b)) = ab2)

⇒ V ar(s2) = 2(n − 1)
σ4

(n − 1)2
=

2σ4

(n − 1)

V ar(t1) = V ar(s2) =
1

(n − 1)
2σ4

V ar(t2) =
(

n − 1

n

)2

V ar(s2) =
(n − 1)

n2
2σ4

V ar(t3) =
(

n − 1

n + 1

)2

V ar(s2) =
(n − 1)

(n + 1)2
2σ4

Mean Squared Error:

MSE(t1) =
1

(n − 1)
2σ4 + 0 =

2

(n − 1)
σ4
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MSE(t2) =
(n − 1)

n2
2σ4 +

(

−
1

n
σ2
)2

=
2n − 1

n2
σ4

MSE(t3) =
(n − 1)

(n + 1)2
2σ4 +

(

−
2

n + 1
σ2
)2

=
2

n + 1
σ4

Moral of the story: There are instances where you can beat an unbiased estimator in MSE with
a bias one. Thus, while it seems like a good idea to look at unbiased estimators, they aren’t
neccessarily the only estimators that are reasonable for a given situation. Also, MLE’s aren’t
always the best idea for an estimator either (t2 was the MLE and wasn’t the best in anything).

• Supplemental Problem
Let Y1, ..., Yn iid B(1, pi) with

logit (pi) = log

(

pi

1 − pi

)

= β0 + β1xi

for known covariate xi. For simplicity, let xiβ = β0 + β1xi

Note:

pi

1 − pi

= exiβ =⇒ pi =
exiβ

1 + exiβ

(i) Likelihood:

L(β) =
n
∏

i=1

pyi

i (1 − pi)
1−yi =

n
∏

i=1

(

pi

1 − pi

)yi

(1 − pi)

substitute in for pi ⇒
n
∏

i=1

e(xiβ)yi

1 + exiβ

(ii) Log-likelihood:

L(β) =
n
∑

i=1

[

(xiβ)yi − ln(1 + exiβ)
]

(iii) Score:

β0 ⇒
n
∑

i=1

[

yi −
1

(1 + exiβ)
exiβ

]

β1 ⇒
n
∑

i=1

[

xiyi −
xi

(1 + exiβ)
exiβ

]
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(iv) Fisher’s information:
Four parts here for a 2x2 information matrix.

−E

(

d score(β0)

d β0

)

=
n
∑

i=1

e−xiβ

(1 + e−xiβ)2

−E

(

d score(β0)

d β1

)

= −E

(

d score(β1)

d β0

)

=
n
∑

i=1

xie
−xiβ

(1 + e−xiβ)2

−E

(

d score(β1)

d β1

)

=
n
∑

i=1

x2
i e

−xiβ

(1 + e−xiβ)2
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