Stat 513
HW 1 Solutions
January 30, 2004

o 7.3.8
Let fi(z) and fa(x) be p.d.f’s with known means p; and ps respectively. Consider the following
contaminated p.d.f. for 0 <0 <1

f(]0) = 0fi(x) + (1 = 0) fo(x)

Let Xj, ..., X,, be a sample from f(x|@), find the MME of 6.

X = E(f(z]0)) = 0E(fi(z)) + (1= 0)E(f2(x)) = Opr + (1 — Oz = 0(p1 — p2) + iz
X = By
M1 — 2

=

e 7.3.11
Let X, ..., X,, be sample from p.d.f. f(z|f) = (%) L{g,00)(x) for some 6 > 0. Find the MME for
6.

First we need to know what the expectation for this p.d.f. is.
© ¢
E(z]0) = / x - ;dm = fin(x)|;° = undefined
0

Note: All k moments for ¥ > 1 do not exist (convience yourself of this, just write out E(X?)
and E(X?)). Thus a method of moments estimator does not exist. Some people tried a ”half-
moment” estimator, but method of moments estimators were defined for k£ being an integer
greater than or equal to 1.

e 7.5.1
Let X1, ..., X,, iid B(1,p), and let T,, = X; + ... + X,, and p,, = %

(a) Show p, is a "BRUE” for p.
There are *two™* parts to this, unbiasedness, and minimum variance.
Unbiased:

np
B(X) =7

17’L
— :p
n .z

E(ﬁn) =

—_



Minimum Variance:

Var(pn)

Since we have iid X;’s I,,(p)

= Var(p,)

(b) Show T,,(n — T,,)(n — 1 — T,,)/d, i

A%

1S

1 & np(l—p)  p(l—p)
il X)) = =
= ; Var(X;) = "
pr(l—p)t*
zln(p) + (1 — z)in(1 — p)
r 1—=x
p 1—p
B (ﬁl_l—x>_1+ 1
P> (1-p)? p 1—p p(l-p)
n
p(1—p)
2 _
[ﬂ _PI=P) 5 i the BRUE
p(1—p) n

unbiased for pg? and find the CR-LB for this where

d, =n(n—1)(n—2).

Unbiasedness:
This is basically just algebra:

()

From previous homework #3 in Stat 512:
E(T,)
E(TY)
E(T)

Substitute in with algebra

CR-LB:
This is the new part.

éjﬂn—DEﬂw%%l—%ﬂﬂﬂ%+Eam]

np
(np)* + np(1 — p)
n(n —1)(n —2)p* + 3n(n — 1)p* + np

n(n —1)(n—2)(p* — 2p* 4 p)
dn
p(1—p)* = pg*

Note: pg? is a function of p. Let g(p) = p(1 — p)> = p—2p? + p*. Then ¢'(p) = 1 — 4p + 3p?
Now using previous results from part (a) and letting T? denote the estimator of pg? from



above:

b [ (P]?  [L—4p+3p°]*  [1—4p+3p°*p(1 —p)
Var(T,) > L) m—_ = -

(¢) Show that T, (n — T,,)/(n(n — 1)) is unbiased for pg and has LARGER variance than the

MLE $4.
Unbiasedness:
M] S S
E l n(n—1) n(n — 1)E[ T =Tl
= ﬁ (nE[T,] - Var(T,] — (E[T3))?)
_ (p—np(l—p)—n’p?) np—np*—p+p?
n(n —1) (n—1)
- b _(Tll)ﬁpl; 7)_ p(1—p) =pq
Variance:
pqg = %(1 — %) by invariance of MLE’s
Var(pg) = VC”"[%Tn(n -T,)] = %Var[Tn(n —T,)]
Var[an(n -T,)] = MWT[TN(TL —T)

Now since # < m, the MLE has a smaller variance.

e 752

(a) Let Xy, ..., X, #d N(u, 1), and T}, be the MLE of u? and Ty, be an unbiased estimator of
12, Calculate the CR-LB for each and compare using consistency and unbiasedness.

Recall that the mle of  is X, so by invariance of MLE, the MLE of 2 is X . Also,
many people specified a specific unbiased estimator for T5,,, but the CR-LB holds for every
unbiased estimator.

n

Liw) = []m) /st

1=1

3



2

(xz - M)
1
E(X?) =Var(X) + BE(X)
1 2
n
E(Ty,) — p* = =

1n n= n
0
0 by assumption
12

2u for both T

So the CR-LB for both T3,, and T5,, is 4%2. The decision whether to use 17, or 15, depends
entirely upon the variance of Ty,. The no-brainer is to subtract off the bias from Ty, and

use that as your estimator.

(b) Find CR-LB for the unbiased estimator of P(X > 2u).

P(X > 2u)

e 753

Let Xi,..., X, did T'(a, N),

T7 be an unbiased estimator of o with A known, and 75 be an

unbiased estimator of A with o known. Find the CR-LB for Var(T}) and Var(Ty). Is either

estimator 'BRUE’?

L,’(O./, )‘) = !

AT (4 1)

xae—xi/)\

4



Li(a,)) = —(a+1)log(\) —log(D(a+ 1)) + alog(z;) — %
U(alh) = —log—T(a+ 1)+ log(z;)
Where ¥(z) = &
I(a])) = E(-V(a+1)=-V(a+1)
UAa) = ———+3
a+1 T
X2 (a +1 A
INo) = E(-—5 +53)
20 a+1
BESCADE
a—1

Notice that we could put the score function in the form A(N)(T2(X) — ) for Ty = 0%1, so it is
BRUE. We cannot change the digamma into that form, so no 77 is BRUE. The CR-LB for T} is
Wﬂ-l)’ and the CR-LB for T2 is QA—_21.
e 7.5.7
Let X, ..., X,, #id Pois(\) and T}, = (X)? — X. Find the lower bound for E(T,, — A\?)2, then find
a function ¢(T},) that is unbiased for A? and find the lower bound for this g(7},).

BE(T,) = EX)-EX)
Var(X) + E(X)* — E(X)

= %+A2—A
_ )\z_n—1>\
n

E(T, - X = MSE(T,)
= Var(T,) + b*(T})

—1
bias(T,,) = T
n
/ . n—1
V) = -
g = N
g = 2A
1
I(\) = be Ex 7.5.6
A2\ — n=1)2
Var(T,) > %



e 7.5.10
Let X1, ..., X,, iid N(u,o?) with both p and o known. Three possible esimators for o2 are:

n(X - X)? (X - X)? n(X - X)?
(n—1) n (n+1)
Compare with respect to bias, variance, and mean squared error.
Bias:
E(t;) = o* (done in previous homework) = b(t;) =0
-1 -1 1
E(ty) = 2= B(t) =20 = b(ty) = ——0>
n n
n—1 n—1 2
E(t;) = -E(t) = = b(ts) = — 2
(ts) n+1 () n+1g (ts) n—i—la
Variance:
Note: Since the X;’s are normal, (n — 1)s?/o? ~ x2_; =T(%5%,2).
Thus,

<ng_2 1> V‘”“(SZ) = 2(n—1) (since Var(T'(a,b)) = ab?)
2y _ ot _ 20*
= Var(s®) = 2(n—1)(n_1)2 = oD

Var(t,) = Var(s®) = 20"

Var(ty) = <n — 1)2 Var(s?) = u204

Var(ts) = <n — 1)2 Var(s?) = (n 1>2204

Mean Squared Error:

MSE(t))



—1 1 2 oan—1
MSE(ty) = %204 + (——a2> = %04
n n n
_ (n—1)_ 4 ( 2 2)2 2y
MSE(t3) = (n+1)220 + 17 ) Ta1°

Moral of the story: There are instances where you can beat an unbiased estimator in MSE with
a bias one. Thus, while it seems like a good idea to look at unbiased estimators, they aren’t
neccessarily the only estimators that are reasonable for a given situation. Also, MLE’s aren’t
always the best idea for an estimator either (¢, was the MLE and wasn’t the best in anything).

e Supplemental Problem
Let Y1, ..., Y, iid B(1, p;) with

logit (p;) = log (1 b ) Bo + Br;

— Vi

for known covariate x;. For simplicity, let x;0 = By + (1x;
Note:

i3
Di 2 e’
= e e =

(i) Likelihood:

L) = ﬁ —H( pi .)ia-pi)

-'Ei Yi

substitute in for p; = H T o7
= evi

(ii) Log-likelihood:

L@ = 3 [ B — in(1+ ")

.
[y

(iii) Score:

i=1 ]'_l—exlﬁ

n .
1 = TiVY; ‘ il
’ ;[ YT e ]



(iv) Fisher’s information:
Four parts here for a 2x2 information matrix.
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