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Lecture Outline

• Probability Models for Inference
– Frequentist vs Bayesian Inference
– (Semi)Parametric vs Distribution-Free Probability Models

• Ensuring Adequate Precision of Inference
– Sample Size Calculation
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Basic Premise

• There are two types of people in the world:

– those who dichotomize everything, and                          

– those who don’t.
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Classes of Statistical Models

• Breiman (2000): The two approaches to data analysis
– Model based (e.g., regression) 

vs
Algorithmic (e.g., trees, neural nets)

• This lecture:
– (Semi)Parametric vs distribution-free (nonparametric)
– Frequentist vs Bayesian
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Clinical Trial Setting

• Clinical Trials: Experimentation in human volunteers
– Designed experiments

• Scientific (epi, basic, clinical) optimality criteria
• Efficiency

– Human volunteers
• Individual and group ethics

– Industrial sponsors
• Economic optimality criteria

– Regulatory agencies
• Require credible data, data analysis
• Entire analysis plan specified prior to gathering any data
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Ultimate Goal

• At the end of the study we want to provide estimates of treatment 
effect and quantification of the strength of statistical precision
– Estimate of the treatment effect

• Single best estimate
• Range of reasonable estimates

– Decision for or against hypotheses
• Binary decision
• Quantification of strength of evidence

7

Inferential Paradigms

• Two complementary ways to quantify the evidence about 
hypotheses 
– (Different people have different standards of evidence)

• Are the observed data what we would reasonably expect to see 
under a specific hypothesis?
– (The frequentist approach using Pr ( X |  ) )

• Based on the observed data, what is our strength of belief about
a specific hypothesis?
– (The Bayesian approach using Pr ( | X  ) )
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(Semi)Parametric vs Distribution-Free

• Analysis of the data is generally in the context of a parametric, 
semiparametric, or distribution-free (nonparametric) model
– Parametric models assume a known shape for the distribution of 

the data

– Semiparametric models assume that the shape is similar in some 
way across groups, but do not otherwise make any assumptions 
about the exact shape of the distribution

– Distribution-free models make no assumption about how the 
shape of the distribution might be similar (or different) across
groups
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Probability Models for Inference

Frequentist vs Bayesian

Where am I going?
Scientific proof is adversarial. We have to address the 
concerns of skeptical observers.

The frequentist and Bayesian paradigms for inference are 
complementary, and we will want to accommodate both 
approaches
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Notation

• A general framework
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Frequentist Probability Model

• Frequentist inference considers the sampling distribution of the 
statistic across conceptual replications of the experiment

• A particular value of       used in the conditional sampling density 
is termed a “hypothesis”

• Frequentists usually do not explicitly consider the joint distribution 
of the data and the parameter, instead they just consider every 
conditional distribution separately
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Frequentist Point Estimation

• Typical methods for finding point estimates
– The hypothesis for which the observed statistic is the mean, 

median, or mode of the sampling distribution, or
– The hypothesis for which the sampling density at the observed 

data is highest

• Optimality of point estimates typically judged by
– Consistency: With an infinite sample size we know the truth

– Minimal bias (or MSE) across repeated experiments
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Frequentist Interval Estimation

• Confidence intervals (confidence sets)
– The set of hypotheses for which we might reasonably expect to 

obtain the observed data

• Typical methods for two sided CI
– For some level of confidence defined by α, and
– For some definition O of the ordering of n

• These CI will have the desired “coverage probability”
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Frequentist Interval Estimation

• Usually the ordering is based on some statistic
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Frequentist Interval Estimation

• Sometimes we choose orderings that also depend upon
– E.g., likelihood ratio ordering from “inverting LR test”
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Frequentist Hypothesis Testing

• Hypotheses

• Reject a hypothesis for which the observed data is too rare
– For some critical value, the type 1 error is

– For some specified alternative hypothesis the power is
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Frequentist Hypothesis Testing

• Typically, for some specified ordering
– We fix the type 1 error to some suitably low level α
– We then find a critical value c that achieves that type 1 error
– We then compute the power curve
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Frequentist Hypothesis Testing

• In some settings we can define “optimal” tests
– Simple hypotheses: Neyman-Pearson lemma tells us that the 

likelihood ratio ordering provides the MP-α test
– Composite hypotheses with monotone likelihood ratio: Karlin-

Rubin theorem provides one-sided UMP-α test
– In two-sided tests, we sometimes appeal to uniformly most 

powerful unbiased (UMPU) tests
• Unbiased tests: 
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Bayesian Probability Model

• Bayesian inference considers the probability distribution for the 
true summary measure conditioned on the observed data and an 
assumed prior distribution

• Bayesians most often specify a frequentist probability model and 
a prior distribution to induce the joint distribution
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Bayesian Probability Space

• Bayesian inference considers the probability distribution for the 
parameter measuring treatment effect

• Possible scientific relevance of the prior distribution
– Describes behavior of scientists: A frequentist probability

• “Of all experimental hypotheses that might have been selected 
for further investigation, how likely is the selected treatment to be 
truly beneficial?”

– Quantifies subjective uncertainty at an individual level
• “What is a particular scientists’ belief about the treatment effect?”

– Consensus subjective prior
• “What is the population average of individual priors?

– But posterior probabilities using an average prior may not 
correspond to average of individual posterior probabilities
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Bayesian Estimation

• Point estimates:
– A summary measure of the posterior probability distribution 

(mean, median, mode)

• Interval estimates: Credible intervals
– A set of hypotheses having the highest posterior density
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Bayesian Decisions

• Tests:
– Reject a hypothesis for which the posterior probability is too low
– Quantify the posterior probability of the hypothesis
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Statistical Inference

• Information required for inference
– Frequentist

• Tests: need the sampling distribution under the null
• Estimates: need the sampling distribution under all hypotheses

– Bayesian
• Tests and estimates: need the sampling distribution under all 

hypotheses and a prior distribution

24

Statistical Inference

• Both approaches have their adherents

• Frequentist
– A precise (objective) answer to not quite the right question
– Well developed nonparametric and moment based analyses (e.g., 

GEE)
– Conciseness of presentation

• Bayesian
– A vague (subjective) answer to the right question
– Adherence to likelihood principle in parametric settings (and 

coarsened approach)
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Ideal Results

• Goals of “drug discovery” are similar to those of diagnostic testing 
in clinical medicine

• We want a “drug discovery” process in which there is
– A low probability of adopting ineffective drugs 

• High specificity (low type I error)

– A high probability of adopting truly effective drugs
• High sensitivity (low type II error; high power)

– A high probability that adopted drugs are truly effective
• High positive predictive value
• Will depend on prevalence of “good ideas” among our ideas

26

Distinctions without Differences

• There is no such thing as a “Bayesian design”

• Every RCT design has a Bayesian interpretation
– (And each person may have a different such interpretation)

• Every RCT design has a frequentist interpretation
– (In poorly designed trials, this may not be known exactly)

27

Diagnostic Medicine: Evaluating a Test

• We condition on diagnoses (from gold standard)
– Frequentist criteria: We condition on what is unknown in practice

• Sensitivity: Do diseased people have positive test?
– Denominator: Diseased individuals
– Numerator: Individuals with a positive test among denominator

• Specificity: Do healthy people have negative test?
– Denominator: Healthy individuals
– Numerator: Individuals with a negative test among denominator

28

Diagnostic Medicine: Using a Test

• We condition on test results
– Bayesian criteria: We condition on what is known in practice

• Pred Val Pos: Are positive people diseased?
– Denominator: Individuals with positive test result
– Numerator: Individuals with disease among denominator

• Pred Val Neg: Are negative people healthy?
– Denominator: Individuals with negative test result
– Numerator: Individuals who are healthy among denominator
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Points Meriting Special Emphasis

• Discover / evaluate tests using frequentist methods
– Sensitivity, specificity

• Consider Bayesian methods when interpreting results for a given 
patient
– Predictive value of positive, predictive value of negative

• Possible rationale for our practices
– Ease of study: Efficiency of case-control sampling
– Generalizability across patient populations

• Belief that sensitivity and specificity might be
• Knowledge that PPV and NPV are not

– Ability to use sensitivity and specificity to get PPV and NPV
• But not necessarily vice versa

30

Bayes’ Rule

• Allows computation of “reversed” conditional probability

• Can compute PPV and NPV from sensitivity, specificity
– BUT: Must know prevalence of disease
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Application to Drug Discovery

• We consider a population of candidate drugs

• We use RCT to “diagnose” truly beneficial drugs

• Use both frequentist and Bayesian optimality criteria
– Sponsor: 

• High probability of adopting a beneficial drug (frequentist power)
– Regulatory:

• Low probability of adopting ineffective drug (freq type 1 error)
• High probability that adopted drugs work (posterior probability)

– Public Health (frequentist sample space, Bayes criteria)
• Maximize the number of good drugs adopted
• Minimize the number of ineffective drugs adopted
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Slightly Different Setting

• Usually we are interested in some continuous parameter
– E.g., proportion of infections cured is 0 < p < 1

• “Prevalence” is replaced by a probability distribution
– Prior (subjective) probability of selecting a drug to test that cures 

proportion p of the population

• Sum over two hypotheses replaced by weighted average (by 
some subjective prior) over all possibilities
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Frequentist Inference

• Control type 1 error: False positive rate
– Based on specificity of our methods

• Maximize statistical power: True positive rate
– Sensitivity to detect specified effect 

• Provide unbiased (or consistent) estimates of effect

• Standard errors: Estimate reproducibility of experiments

• Confidence intervals

• Criticism: Compute probability of data already observed
– “A precise answer to the wrong question”

34

Bayesian Inference

• Hypothesize prior prevalence of “good” ideas
– Subjective probability

• Using prior prevalence and frequentist sampling distribution
– Condition on observed data
– Compute probability that some hypothesis is true

• “Posterior probability”
– Estimates based on summaries of posterior distribution

• Criticism:  Which presumed prior distribution is relevant?
– “A vague answer to the right question”

35

Frequentist vs Bayesian

• Frequentist and Bayesian inference truly complementary

• I contend that both frequentist and Bayesian inference can 
provide evidence for treatment effects

• Frequentist: Design so the same data not likely from null / alt
– (This is in some sense placing equal emphasis on both 

hypotheses.)

• Bayesian: Explore updated beliefs based on a range of priors
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Frequentist vs Bayesian

• Bayes rule tells us that we can parameterize the positive 
predictive value by the type I error and prevalence
– Maximize new information by maximizing Bayes factor
– With simple hypotheses, the steeper the power curve, the greater

discrimination between hypotheses
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Bayes Factor

• In the more general case, Bayes Factor can be computed to 
compare two sets of hypotheses
– But it will then depend on the prior
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Statistical Inference

• I take the view that both approaches need to be accomodated in 
every analysis
– Goal of the experiment is to convince the scientific community, 

which likely includes believers in both standards for evidence

– Bayesian priors should be chosen to reflect the population of 
priors in the scientific community

39

The Problem As I See It

• Scientific criteria dictate using distribution-free probability models 
insofar as possible and presenting both frequentist and Bayesian 
inference

• Commonly used frequentist statistics are often easily interpreted 
as distribution-free
– (We often calculate the variance wrong for my preferred scientific 

hypotheses)

• Bayesian methods are most often couched in parametric models
– Distribution-free methods only poorly developed  

40

The Ultimate Goal

• Development of a framework for the analysis of clinical trial data 
in which
– the hypotheses being tested are defined for distribution-free 

probability models
• (distribution-free model is superset of parametric alternatives)

– tests and estimates are consistent
– both Bayesian and frequentist inference are possible
– the methods can easily be used by nonstatisticians
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The Ultimate Goal

• Major lssues:
– Distribution-free interpretation of summary measures

– Specification of hypotheses

– Estimation of sampling distributions
• Variance and mean-variance relationships

– Dual Bayesian approaches for each test
• Suitable families of priors

42

Probability Models for Inference

(Semi)Parametric vs Distribution-Free Models

Where am I going?
Statistical methods are most often derived in the context of 
parametric or semi-parametric probability models.

The “unconscious” frequentist gravitates towards models 
that are robust across distributions.

We will want to use the same models for Bayesian 
inference.

43

Theorem (Fulghum):

All you really need to know, 
can be learned in kindergarten.

Corollary (Emerson):

Most the statistics you really 
need to know can be learned 

in Biost 514 and Stat 512.

Setting: Two Arm Clinical Trials

44

"Because the simplest thing 
statisticians

need to do is compare two groups. 
And we don't know how to do it."

- Attributed to Fred Mosteller when asked by
Dr. Elliot Antman (a well known cardiologist)

to explain why we need so many types of
two sample comparison procedures. 

Setting: Two Arm Clinical Trials
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Probability Models

• I define parametric, semiparametric, and nonparametric models in 
the two independent sample setting
– My definition of semiparametric models is a little stronger than 

some statisticians
• There are probability models intermediate to my semiparametric

and distribution-free categories (e.g., “stochastically ordered”)
– The distinction is to isolate models with assumptions that I think 

too strong

• Notation for two sample probability model
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Parametric Probability Models

• F, G are known up to some finite dimensional parameter vectors 
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Parametric Probability Models

• Examples
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Parametric Probability Models

• Target of inference
– Because the shape of the distribution is entirely known, the target 

of inference can be expressed as a function of the unknown 
parameters

– If the goal is to estimate some particular functional of the 
distribution, it must be recognized that the target of inference in 
the most general case will involve the shape of the distribution

• “functional” includes operations on its function arguments such 
as integration, inversion, etc
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Semiparametric Probability Models

• Forms of F, G are unknown, but related to each other by some 
finite dimensional parameter vector 
– F can be determined from G and a finite dimensional parameter

– (Most often: under the null hypothesis, F = G)

50

Semiparametric Probability Models

• Forms of F, G are unknown, but related to each other by some 
finite dimensional parameter vector 
– F can be determined from G and a finite dimensional parameter
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Semiparametric Probability Models

• Examples

   

 

   
    






tGtF

tGtF

tGtF

tGtF











 





1-1         :hzd Prop

   :failure Accel

     :scale-Shift

               :Shift

52

Semiparametric Probability Models

• Target of inference
– Most often, the target of inference is some function of the 

unknown finite dimensional parameter
• Recall that for identifiability, that parameter measures the 

relationship between F and G

– If the goal is to estimate some particular functional of the 
distribution, it must be recognized that the target of inference in 
the most general case will also involve the infinite dimensional
parameter measuring the shape of the distribution
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Distribution-Free Probability Models

• Forms of F, G are completely arbitrary and unknown
– Each distribution is an infinite dimensional parameter

• An infinite dimensional parameter is needed to derive the form of 
F from G

54

Distribution-Free Probability Models

• Target of inference
– The target of inference in the most general case is regarded as 

some functional contrast across the distribution functions F and G

– Most often, however, this is a contrast of functionals across the 
distributions
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The Problem

• In the development of statistical models, and even moreso in the 
teaching of statistics, parametric probability models have received 
undue emphasis

• Examples:
– t test is typically presented in the context of the normal probability 

model
– theory of linear models stresses small sample properties
– random effects specified parametrically
– Bayesian (and especially hierarchical Bayes) models are replete 

with parametric distributions

56

The Problem

• ASSERTION: Such emphasis is not typically in keeping with the 
state of knowledge as an experiment is being conducted

• The parametric assumptions are more detailed than the 
hypothesis being tested, e.g.,:
– Question: How does the intervention affect the first moment of the 

probability distribution?
– Assumption: We know how the intervention affects all of the 2nd,

3rd, …, ∞ central moments of the probability distribution.
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Arguments Against (Semi)Parametrics

• Conditions under which an intervention might be expected to 
affect many aspects of a probability distribution

• Example 1: Cell proliferation in cancer prevention
– Within subject distribution of outcome is skewed (cancer is a focal 

disease)
– Such skewed measurements are only observed in a subset of the 

subjects
– The intervention affects only hyperproliferation (our ideal)

58

Arguments Against (Semi)Parametrics

• Conditions under which an intervention might be expected to 
affect many aspects of a probability distribution (cont.)

• Example 2: Treatment of hypertension
– Hypertension has multiple causes
– Any given intervention might treat only subgroups of subjects 

(and subgroup membership is a latent variable)
– The treated population has a mixture distribution

• (and note that we might expect greater variance in the group with 
the lower mean)

59

Arguments Against (Semi)Parametrics

• Conditions under which an intervention might be expected to 
affect many aspects of a probability distribution (cont.)

• Example 3: Effects on rates
– The intervention affects rates
– The outcome measures a cumulative state
– Arbitrarily complex mean-variance relationships can result

60

The Problem

• These and other mechanisms would seem to make it likely that 
the problems in which a fully parametric model or even a 
semiparametric model is correct constitute a set of measure zero

– Exception: independent binary data must be binomially distributed 
in the population from which they were sampled randomly 
(exchangeably?)
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Optimality of Inference

• Impact on what we teach about optimality of statistical models
– Clearly, parametric theory may be irrelevant in an exact sense 

(though as guidelines it is still useful)

– Much of what we teach about the optimality of nonparametric 
tests is based on semiparametric models 

• e.g., Lehmann, 1975: location-shift models

62

Example: Wilcoxon Rank Sum Test
• Common teaching:

– Not too bad against normal data
– Better than t test when data have heavy tails

• More accurate guidelines:
– Above holds when a shift model holds for some monotonic 

transformation of the data
– If propensity to outliers (mixture distributions) is different between 

groups, the t test may be better even in presence of heavy tails
– In the general case, the t test and the Wilcoxon are not testing the 

same summary measure

63

Distribution-Free Probability Models

• Target of inference
– The target of inference in the most general case is regarded as 

some functional contrast across the distribution functions F and G

– Most often, however, this is a contrast of functionals across the 
distributions

     GF ,


       GFh 


,
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Targets of Inference

– Difference (or ratio) of mean blood pressures
– Ratio of geometric mean blood pressures
– Ratio (or difference) of median blood pressures
– Difference (or ratio) of proportion with SBP < 120
– Ratio (or difference) of odds of having SBP < 120
– Ratio (or difference) of average hazard for time to SBP < 120

– Cox PH ratio of hazard for time to SBP < 120
– Median of difference in blood pressures
– Probability that X < Y
– Supremum of | F(t) - G(t) |

       GFh 


,

     GF ,

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Statistical Models

• How are (semi)parametric assumptions really used in statistical 
models?
– Choice of functional for comparisons
– Formula for computing the estimate of the functional
– Distributional family for the estimate
– Mean-variance relationship across alternatives
– Shape of distribution for data

66

Choice of Functional for Comparisons

• Parametric: Driven by efficiency of functional for the particular 
parametric family
– Normal: use mean
– Lognormal: use (log) geometric mean
– Double exponential: use median
– Uniform: use maximum

• Semiparametric: Choose functional for scientific relevance, etc., 
then adopt a semiparametric model in which desired functional is 
basic to model
– Survival data: consider hazard ratio and use proportional hazards

67

Hierarchy for Choice of Functional

• Better bases for choosing summary measure for decisions in 
order of importance (nonparametric)
– Current state of scientific knowledge
– Scientific (clinical) relevance
– Potential for intervention to affect the measure
– Statistical accuracy and precision of analysis

68

Criteria: Current State of Knowledge

• Scientific investigation proceeds through a series of 
studies/experiments

• Initial studies refine hypotheses to be examined in later studies
– Relevance of a binary search: Divide the set of all possible 

hypotheses into two sets to be discriminated between in the initial 
experiment

• E.g., First try to characterize first order trends, later try to
determine exact shape of dose-response
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Criteria: Scientific Relevance

• E.g., Goal is predicting totals in a larger population
– Health services research: mean cost of different health care 

strategies

• E.g., Sensitivity to detecting differences in tendency to outlying 
values
– Cancer prevention: mean cell proliferation rates within a person

(cancer is an outlier)
– Economic policy: Sociology of wealth distribution (median) vs

economic force (mean)

• E.g., Important clinical thresholds
– Sepsis trials: 28 day mortality rather than time to death

70

Criteria: Potential for Effect

• E.g., Treatment is designed to affect outliers
– Aspirin only lowers temperature in fever
– Ideal cancer therapy only decreases proliferation of cancer cells

71

Criteria: Statistical Precision

• E.g., Outliers decrease the precision of estimating means relative 
to precision of estimating geometric means or medians

• E.g., Dichotomization of data may result in a loss of efficiency

72

Statistical Models

• How are (semi)parametric assumptions really used in statistical 
models?
– Choice of functional for comparisons
– Formula for computing the estimate of the functional
– Distributional family for the estimate
– Mean-variance relationship across alternatives
– Shape of distribution for data
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Parametric Estimate of Functional

• Estimate parameters and then derive summary measures from 
parametric model

• E.g., estimating the median with aymptotically efficient MLE
– Normal:                          sample mean
– Exponential:                  sample mean / log(2)
– Lognormal:                    sample geometric mean
– Double exponential:       sample median

74

Semiparametric Estimate of Functional

• Parameter is typically fundamental to probability model
– Transform one group by the parameter and obtain the same 

distribution as the other group

• E.g., proportional hazards model
– Hazard ratio estimate averages hazard ratios at each failure time

• E.g., survival cure model (Ibrahim, 1999, 2000)
– Proportion pi is cured (survival probability 1 at ∞) in the i-th group
– Noncured group has survival distribution modeled parametrically 

(e.g., Weibull) or semiparametrically (e.g., proportional hazards)
– The problem as I see it: Incorrect assumptions about the 

nuisance parameter can bias the estimation of the treatment 
effect θ = p1 – p0

75

Distribution-Free Estimate of Functional

• Estimate summary measures from nonparametric empirical 
distribution functions

• E.g., use sample median for inference about population medians

• Note:
– Often the nonparametric estimate agrees with a commonly used 

parametric or semiparametric estimate
• Interpretation may depend on sampling scheme, however

– The difference will come in the computation of the standard errors

76

Statistical Models

• How are (semi)parametric assumptions really used in statistical 
models?
– Choice of functional for comparisons
– Formula for computing the estimate of the functional
– Distributional family for the estimate
– Mean-variance relationship across alternatives
– Shape of distribution for data
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(Semi)Parametric Distribution of Estimate

• Parametric: Use probability theory to derive distribution of 
estimate
– E.g., estimating the mean

• Normal: sample mean is normal
• Exponential: sum is gamma
• Lognormal: log geometric mean is normal

• Semiparametric:
– Small sample properties: Conditional distributions based on 

permutation
– Large sample properties: Asymptotics

78

Distribution Free Estimates

• Nonparametric: Asymptotic normal theory (almost always)
– Most nonparametric estimators involve a sum somewhere: 

Central limit theorem holds (like it or not)
• Thus gamma distributions converge to a normal…

– Estimates derived from empirical CDF, which converges 
asymptotically to Brownian bridge process

79

Later: Reliance on Asymptotics

• We use asymptotic theory as justification for approximations 
based on the normal distribution

• In RCT, the sample size at which the approximation holds 
depends on four aspects (in approx order from lowest to highest)
– Approximate normality

• Depends on how far out in the tails of the distribution we need
– Nearly constant mean-variance relationship
– Discreteness of data
– Local alternatives used in experimental sequential design

• We tend to design studies to have power less than 1

  


VNn d ,0ˆ 




 
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Statistical Models

• How are (semi)parametric assumptions really used in statistical 
models?
– Choice of functional for comparisons
– Formula for computing the estimate of the functional
– Distributional family for the estimate
– Mean-variance relationship across alternatives
– Shape of distribution for data
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Sampling Distributions

• Asymptotically, most the summary measures considered can be 
shown to have a limiting normal distribution 
– (exception is the supremum of the difference between the cdf’s)

• In this setting, we need only estimate the variance of the 
sampling distribution under specific hypotheses
– Formulas
– Bootstrapping within groups (Population model)
– Permutation distributions (Randomization model)

82

Sampling Distributions
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Sampling Distributions

• In most cases, however, it must be recognized that we can only 
estimate the variance under the truth, which may not correspond 
to a hypothesis of interest

• If the intervention can affect the variance of the summary 
measures, then we must account for a mean-variance 
relationship when considering different hypotheses

84

Sampling Distributions

• Example: Two sample test of binomial proportion
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Sampling Distributions

• Example: Two sample test of binomial proportion
– Estimated variance is subject to 

• Sampling variability
• Difference between the truth and the hypothesis
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Sampling Distributions

• Estimating mean variance relationships
– May not be too important for frequentist tests of the null 

hypothesis, because convention often dictates the null variance 
we should use

• Use randomization and/or population variances in adversarial 
argument

– However confidence intervals and all Bayesian inference are 
statements about what data would arise under a variety of 
hypotheses

• We must have some idea about how the variance might change 
with the mean

87

Statistical Hypotheses

• In comparing the distributions across groups using some 
summary measure, there are two general formulations of the 
hypotheses
– Randomization model - H0: F = G

• Allows us to ignore possible treatment effects on aspects of the
distribution beyond that measured by 

– Population model - H0:  = 0

• Sensitive only to the value of the summary measure, thereby 
allowing for the possibility that the intervention has other effects

88

Statistical Hypotheses

• Example: t test assuming equal variances
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Statistical Hypotheses

• Example: t test assuming equal variances (cont.)
– Type I error of test

• Randomization model: Correct, because unequal variances is an 
alternative hypothesis

• Population model: Incorrect if variances are unequal and sample 
sizes are unequal

90

Statistical Hypotheses

• Example: t test assuming equal variances (cont.)
– Consistency of test: With an infinite sample size, will every 

alternative hypothesis be rejected with probability 1?
• Randomization model: Inconsistent test, because will not reject 

with probability 1 unless means are different
• Population model: Consistent test

91

Statistical Hypotheses

• Example: t test assuming unequal variances
– Population or randomization models

• Correct type I error
• Consistent test
• (slightly less efficient under randomization model)
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Sampling Distributions

• Example:  Wilcoxon rank sum statistic
– It basically estimates Pr(X<Y) and the null variance is based on a 

permutation distribution
• Inconsistent to test the randomization hypothesis
• Wrong size to test the population hypothesis

– (consider a bimodal distribution in one group)
– Bootstrapping could be used to find a consistent test of the 

population hypothesis (under the truth)
• (Note, however, that the Wilcoxon is based on a bivariate

functional that is intransitive for location)
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Statistical Hypotheses

• It seems most in keeping with the scientific setting to consider the 
population model as the primary hypothesis
– However: The experiment must convince the scientific 

community, and some skeptics might want proof under both 
models

94

Sampling Distributions

• Possible approaches to the mean-variance relationship 
estimation
– Explore various mean-variance relationships

• Bootstrap tilting could be used here

– Assume no mean-variance relationship

– Sensitivity analyses intermediate to the two, e.g.

  rVar  ˆ
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Sampling Distributions

• Possible approaches to the mean-variance relationship 
estimation (cont.)
– A key issue is deciding how many observations are present for 

estimating the mean-variance relationship
• If the control group can be used to estimate behavior under the 

null and the treatment group under the alternative, then possibly 
have two

• If an active intervention modifies the response in both groups or 
in population model, then may only have one

96

Statistical Models

• How are (semi)parametric assumptions really used in statistical 
models?
– Choice of functional for comparisons
– Formula for computing the estimate of the functional
– Distributional family for the estimate
– Mean-variance relationship across alternatives
– Shape of distribution for data
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Statistical Models

• Shape of distribution for data
– Only really an issue for prediction, which is not considered here

98

Probability Models for Inference

Distribution-Free Bayesian Inference

Where am I going?
A simple approach to providing Bayesian inference in a 
distribution-free probability model.

99

Bayesian Posterior Distribution

• Derivation based on
– Density for data
– Prior for parameter
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Nonparametric Bayes

• Dirichlet process priors have been proposed for Bayesian 
inference in the nonparametric setting

• Motivation from categorical distributions
– Support of distribution is finite set of discrete points
– Multinomial distribution parameterizes probability of each value
– Dirichlet distribution is conjugate prior for multinomial

• Application to nonparametric probability model
– The data is presumed to arise from a mixture distribution
– A Dirichlet distribution is presumed for the mixing parameters
– Possibly infinite number of component distributions allows 

modeling of continuous distributions over a common support
•  Dirichlet process
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Dirichlet Process Priors

• The basic idea is most easily seen as the process of deriving the 
Bayesian estimates
– Derivation considers a predictive data generation process

• Basic idea
– H is some base distribution (possibly continuous)

• Defines the support of the family of distributions
• The presumed distribution in the absence of any data

– α is a concentration (or precision) parameter measuring the 
relative belief in H or the empirical distribution of the data in 
Bayesian predictive probability for next observation

• nth observation comes from H with probability α / (α + n – 1)
• nth observation comes from empirical cdf with probability 

(n-1) / (α + n – 1)
1

ˆ
nF
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Dirichlet Process Priors: Properties

• It can be shown that with enough data, the Dirichlet Process prior 
will be consistent for a true distribution having the same support 
as H
– The closer the true distribution is to H, the better the small sample 

behavior (especially with a high value of the concentration 
parameter α

• However, it is difficult to quantify how the prior places mass on 
particular distributions in a distribution-free sense
– E.g., how much mass is placed on bimodal distributions?

103

“Coarsened” Bayesian Models

• Modification regards estimate of summary measure as the data
– Use asymptotic distributions under population model
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Impact of “Coarsening”

• Relative to full parametric approach
– We treat the estimate as if it is sufficient
– We ignore nuisance parameters, invoking consistency of 

estimates
– We model a mean-variance relationship
– We use the approximate normal distribution based on 

asymptotics instead of the exact distribution

• In many commonly used parametric or semi-parametric models, 
the only loss is the use of the asymptotic approximation
– Sample mean is MLE in the regular normal (known variance), 

binomial, Poisson, exponential probability models
– Hazard ratio is semi-parametric sufficient in proportional hazards
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Advantages / Disadvantages

• Distribution-free consistent estimates of parameter measuring 
treatment effect

• Specification of prior distributions on the parameter measuring 
treatment effect

• Furthermore, choice of normal priors allows a standardized 
exploration of Bayesian inference across a space of priors

106

Standardized Presentation of Inference

• The chief advantage of frequentist inference (to my mind) is that it 
presents a standard for concise presentation of results
– Estimates, standard errors, P values, CI

• Bayesian analysis, on the other hand, requires such a 
presentation for every prior
– Your prior does not matter to me
– A consensus prior will not capture the diversity of prior opinion

107

Sensitivity of Inference to Priors

• Papers can present frequentist sampling distribution as the 
“sufficient statistic” for Bayesian inference

• In the context of the coarsened Bayes approach, we can adopt a 
standard based on normal priors
– Conjugate distribution in the absence of a mean-variance 

relationship

• Two dimensional space of prior distributions
– Prior mean (pessimism)
– Prior standard deviation (dogmatism)

• Also can be measured as information in prior relative to that in
planned sample

• Bayesian inference as a contour plot for each inferential quantity
– Posterior mean, limits of credible intervals, posterior probabilities 108

“Coarsened” Bayesian Posterior Distn
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“Coarsened” Bayesian Posterior Distn
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Example
• Contour plots for Bayesian inference: Posterior mean

–

111

Sensitivity Analyses

• In the presence of a mean-variance relationship, a more 
complicated posterior results
– Can be numerically integrated or MCMC

• To the extent that people can only describe the first two moments 
of their prior:
– A convenient standard for presentation

• But, normal prior is less informative than other priors having the 
same mean and variance

• In any case, so long as the estimate and standard error is 
presented in a paper, a reader can apply a more complicated 
prior

112

Mean-Variance Relationship

• Provide a prior distribution for summary measure that 
incorporates a prior on the mean-variance relationship

• Note that the concept of updating the prior is probably not valid 
here, because there is really no added information about mean-
variance relationship
– The mean variance relationship is observed at two points (at 

most)
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Ramifications

• The approach to using estimates as the data does mean that in 
some cases we cannot regard that we are continually updating 
our posterior

• E.g.: The sample median of the combined sample is not 
necessarily a weighted mean of the sample median from two 
separate samples

114

Ensuring Precision

Sample Size Estimation

Where am I going?
A common formula can be used for sample size estimation 
in the frequentist distribution-free setting
We consider how study design affects sample size

115

Statistical Planning

• Satisfy collaborators as much as possible
– Discriminate between relevant scientific hypotheses

• Scientific and statistical credibility
– Protect economic interests of sponsor

• Efficient designs
• Economically important estimates

– Protect interests of patients on trial
• Stop if unsafe or unethical
• Stop when credible decision can be made

– Promote rapid discovery of new beneficial treatments

116

Sample Size Calculation

• Traditional approach
– Sample size to provide high power to “detect” a particular 

alternative

• Decision theoretic approach
– Sample size to discriminate between hypotheses

• “Discriminate” based on interval estimate
• Standard for interval estimate: 95% 

– Equivalent to traditional approach with 97.5% power



Lecture 2 April 8, 2013

Statistical Design of Clinical Trials, SPR 2013 30

117

Reporting Inference

• At the end of the study analyze the data

• Report three measures (four numbers)
– Point estimate
– Interval estimate
– Quantification of confidence / belief in hypotheses

118

Reporting Frequentist Inference

• Three measures (four numbers)

• Consider whether the observed data might reasonably be 
expected to be obtained under particular hypotheses
– Point estimate: minimal bias? MSE?
– Confidence interval: all hypotheses for which the data might 

reasonably be observed
– P value: probability such extreme data would have been obtained 

under the null hypothesis
• Binary decision: Reject or do not reject the null according to 

whether the P value is low

119

Reporting Bayesian Inference

• Three measures (four numbers)

• Consider the probability distribution of the parameter conditional 
on the observed data
– Point estimate: Posterior mean, median, mode
– Credible interval: The “central” 95% of the posterior distribution 
– Posterior probability: probability of a particular hypothesis 

conditional on the data
• Binary decision: Reject or do not reject the null according to 

whether the posterior probability is low

120

Parallels Between Tests, CIs

• If the null hypothesis not in CI, reject null
• (Using same level of confidence)

• Relative advantages
– Test only requires sampling distn under null
– CI requires sampling distn under alternatives
– CI provides interpretation when null is not rejected
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Scientific Information

• “Rejection” uses a single level of significance
– Different settings might demand different criteria

• P value communicates statistical evidence, not scientific 
importance

• Only confidence interval allows you to interpret failure to reject 
the null: 
– Distinguish between

• Inadequate precision (sample size)
• Strong evidence for null

122

Hypothetical Example

• Clinical trials of treatments for hypertension

• Screening trials for four candidate drugs 
– Measure of treatment effect is the difference in average SBP at 

the end of six months treatment
– Drugs may differ in

• Treatment effect (goal is to find best)
• Variability of blood pressure

– Clinical trials may differ in conditions
• Sample size, etc.

123

Reporting P values
Study                                P value

A                                   0.1974

B                                   0.1974

C                                   0.0099

D                                   0.0099

124

Point Estimates
Study       SBP Diff                 

A          27.16                   

B           0.27                   

C          27.16                   

D           0.27                   
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Point Estimates
Study       SBP Diff                 P value

A          27.16                    0.1974

B           0.27                    0.1974

C          27.16                    0.0099

D           0.27                    0.0099
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Confidence Intervals
Study       SBP Diff      95% CI     P value

A          27.16    -14.14, 68.46   0.1974

B           0.27     -0.14,  0.68   0.1974

C          27.16      6.51, 47.81   0.0099

D           0.27      0.06,  0.47   0.0099

127

Interpreting Nonsignificance

• Studies A and B are both “nonsignificant”
– Only study B ruled out clinically important differences
– The results of study A might reasonably have been obtained if the 

treatment truly lowered SBP by as much as 68 mm Hg

128

Interpreting Significance

• Studies C and D are both statistically significant results
– Only study C demonstrated clinically important differences
– The results of study D are only frequently obtained if the 

treatment truly lowered SBP by 0.47 mm Hg or less
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Bottom Line

• If ink is not in short supply, there is no reason not to give point 
estimates, CI, and P value

• If ink is in short supply, the confidence interval provides most
information
– (but sometimes a confidence interval cannot be easily obtained, 

because the sampling distribution is unknown under the null)
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Full Report of Analysis
Study    n  SBP Diff      95% CI     P value

A     20   27.16    -14.14, 68.46   0.1974

B     20    0.27     -0.14,  0.68   0.1974

C     80   27.16      6.51, 47.81   0.0099

D     80    0.27      0.06,  0.47   0.0099
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Sample Size Calculation

• Traditional approach
– Sample size to provide high power to “detect” a particular 

alternative

• Decision theoretic approach
– Sample size to discriminate between hypotheses

• “Discriminate” based on interval estimate
• Standard for interval estimate: 95% 

– Equivalent to traditional approach with 97.5% power

132

Issues

• Summary measure
– Mean, geometric mean, median, proportion, hazard…

• Structure of trial
– One arm, two arms, k arms
– Independent groups vs cross over
– Cluster vs individual randomization
– Randomization ratio

• Statistic
– Parametric, semi-parametric, nonparametric
– Adjustment for covariates
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Refining Scientific Hypotheses

• Scientific hypotheses are typically refined into statistical 
hypotheses by identifying some parameter  measuring 
difference in distribution of response
– Difference/ratio of means
– Ratio of geometric means
– Difference/ratio of medians
– Difference/ratio of proportions
– Odds ratio
– Hazard ratio

134

Inference

• Generalizations from sample to population

• Estimation 
– Point estimates
– Interval estimates

• Decision analysis (testing)
– Quantifying strength of evidence

135

Measures of Precision

• Estimators are less variable across studies
– Standard errors are smaller

• Estimators typical of fewer hypotheses
– Confidence intervals are narrower

• Able to statistically reject false hypotheses
– Z statistic is higher under alternatives

136

Std Errors: Key to Precision

• Greater precision is achieved with smaller standard errors
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Increasing Precision

• Options

– Increase sample size

– Decrease V
• Alter statistical summary measure
• Improve reliability of measurements
• Alter study design (e.g., cross-over)
• Alter eligibility (decrease heterogeneity)
• Alter clinical endpoint

– (Decrease confidence level)

138

Without Loss of Generality     

• It is sufficient to consider a one sample test of a one-sided 
hypothesis
– Generalization to other probability models is immediate

• We will interpret our variability relative to average statistical info
– Generalization to two sided hypothesis tests is straightforward

• Fixed sample one-sided tests
– Test of a one-sided alternative (+ > 0 )

• Upper Alternative:    H+:   + (superiority)    
• Null:                          H0:   0 (equivalence, inferiority)

– Decisions based on some test statistic T:
• Reject H0 (for H+)    T  c 
• Reject H+ (for H 0)    T  c 
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Notation
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Ex: One Sample Mean
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Ex: One Sample Geometric Mean
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Ex: Difference of Indep Means
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Ex: Diff of Indep Proportions
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Ex: Difference of Paired Means
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Ex: Mean of Clustered Data
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Ex: Independent Odds Ratios
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Ex: Hazard Ratios
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Ex: Linear Regression
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Statistics to Address Variability

• At the end of the study we perform frequentist and/or Bayesian 
data analysis to assess the credibility of clinical trial results

– Estimate of the treatment effect
• Single best estimate
• Precision of estimates

– Decision for or against hypotheses
• Binary decision
• Quantification of strength of evidence

150

Criteria for Precision

• Standard error

• Width of confidence interval

• Statistical power:  Probability of rejecting the null hypothesis
– Select level of significance

• Standard:    One-sided 0.025; two-sided 0.05
• Pivotal:        One-sided 0.005; two-sided 0.01

– Select “design alternative”
• Minimal clinically important difference

– To detect versus declaring significant
– May consider what is feasible

• Minimal plausible difference
– Select desired power

• High power for a decision theoretic approach

151

Sample Size Determination

• Based on sampling plan, statistical analysis plan, and estimates
of variability, compute

– Sample size that discriminates hypotheses with desired power, 

OR

– Hypothesis that is discriminated from null with desired power 
when sample size is as specified, or

OR

– Power to detect the specific alternative when sample size is as 
specified 152

Standardized Setting
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Sample Size Computation: CI

• Confidence interval discriminates between null, design alternative
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Sample Size Computation: Power
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Extension to Sequential Sampling
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When Sample Size Constrained

• Often (usually?) logistical constraints impose a maximal sample 
size
– Compute power to detect specified alternative

– Compute alternative detected with high power
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Special Case: Binomial Model

• Issues in applying normal approximation in small samples
– Approximate normal distribution
– Mean-variance relationship
– Discreteness

• In one sample case we can just use the exact binomial 
distribution
– But we can use this case to explore the relative contributions of 

the above three issues

• In two sample settings it is generally important to use other 
methods when sample sizes will be small
– Fishers exact test is too conservative  loss of power
– Recommend “unconditional exact tests” instead
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Illustration: One Sample Binomial

• Methods for construction of confidence intervals
– Exact distribution
– Exact distribution with half-p
– Wald intervals
– Continuity corrected Wald intervals
– Score intervals
– Continuity corrected Score intervals

• Recall we construct CI by inverting tests
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Exact P Values

• Uses binomial distribution
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Exact P Values: Half - P

• Uses binomial distribution, but half the probability of being equal 
to observed value
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Exact (Half P) CI Coverage

• Coverage as function of p for n=20

162

Wald P Values

• Uses normal approximation with MLE in variance

 

  

























 



























 

pp

p
n
k

np
n
kp

pp

p
n
k

np
n
kp

ˆ1ˆ
1|ˆPr     :PUpper 

ˆ1ˆ
|ˆPr    :PLower 

0

0

0

0

163

Asymptotic CI: Elevator Stats

• Often we can just use best estimate of p in standard error for 
confidence intervals and ignore the continuity correction
– np and n(1-p) must be large

 
n

ppzpp
ˆ-1ˆˆ         :for  CI )%-00(11 2/1  

164

Wald CI Coverage

• Coverage as function of p for n=20
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Continuity Corrected Wald P Values

• Uses normal approximation with MLE in variance, but adjusts for 
discreteness
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Continuity Corrected Wald CI Coverage

• Coverage as function of p for n=20

167

Score P Values

• Uses normal approximation with hypothesized variance
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Score CI Coverage

• Coverage as function of p for n=20
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Continuity Corrected Score P Values

• Uses normal approximation with hypothesized variance, but 
adjusts for discreteness
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Asymptotic CI: Best Approach

• We do best by considering mean-variance relationship and 
continuity correction
– Requires quadratic formula or iterative search
– (Quadratic formula can be easily implemented in Excel, etc.)
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Continuity Corrected CI Coverage

• Coverage as function of p for n=20

172

Continuity Corrected 95% CI Coverage

• Coverage as function of n
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Continuity Corrected 99% CI Coverage

• Coverage as function of n

174

Two Sample Binomial

• With two sample binomial, we are interested in θ = p1 – p0

• There is a nuisance parameter p0 that affects the distribution of 
the statistic

• Classical choices include
– Fishers exact test
– Chi square test (score test)
– Wald test
– Likelihood ratio test

• Better choice in small samples: unconditional exact tests

175

Modifications: Unconditional Exact Test

• Use the classical statistic

• Don’t presume the classical distribution
– Don’t assume chi squared statistic has chi square distribution
– Don’t assume Fisher’s Exact P value has uniform distribution

• Consider all possible values of p common to both groups, and 
use exact distribution
– Then take worst case

176

Regions of Correct Size for Asymptotics



Lecture 2 April 8, 2013

Statistical Design of Clinical Trials, SPR 2013 45

177

Critical Regions for Fishers Exact Test

178

Critical Regions for Chi Square Test

179

Actual Type 1 Error

• Various unadjusted and adjusted tests as function of p

180

Gains in Power

• Power of unadjusted, adjusted level .05 tests
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General Comments

• It is generally immaterial whether the Fisher’s exact test P value 
or the chi square statistic or likelihood ratio statistic is used as the 
basis for the exact test

• In any case, the critical value is dependent upon the sample sizes

• Using this approach, substantial improvement in power is 
obtained in low sample sizes

• I strongly recommend its use when confronted with small samples 
in real life

182

Increasing Precision: Options

• Increase sample size

• Decrease V
– Statistically

• Alter statistical summary measure
• Adjust for prognostic covariates
• Alter study design (e.g., cross-over)

– Scientifically
• Improve reliability of measurements
• Alter eligibility (decrease heterogeneity)
• Alter clinical endpoint

• (Decrease confidence level)
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Summary Measures: Relative Efficiency

• Example: Dichotomization of exponential time to event
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Summary Measures: Relative Efficiency

• Example: Dichotomization of exponential time to event
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Summary Measures: Relative Efficiency

• Example: Dichotomization of exponential time to event
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Summary Measures: Relative Efficiency

• Minimum relative efficiency: 1.544 at c=1.594 (p= 0.203)

187

Dichotomization of Measurements

• In general, dichotomization (or categorization) of measurements 
will result in a loss of precision when assessed in a parametric
model
– The relative efficiency loss will depend upon the exact parametric 

model

• When viewed in a distribution-free manner, however, failure to 
dichotomize the data may mean that inference relates to the 
wrong measure of treatment effect
– Quite often, we dichotomize data to reflect scientific importance

• E.g., attaining normal SBP or blood glucose
• E.g., surviving at least 28 days in critical care

188

Controlling Variation

• In a two sample comparison of means, we might control some 
variable in order to decrease the within group variability
– Restrict population sampled
– Standardize ancillary treatments
– Standardize measurement procedure
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Adjusting for Covariates

• When comparing means using stratified analyses or linear 
regression, adjustment for precision variables decreases the 
within group standard deviation
– Var (Y | X) vs Var (Y | X, W)

190

Ex: Linear Regression
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Precision with Proportions

• When analyzing proportions (means), the mean variance 
relationship is important
– Precision is greatest when proportion is close to 0 or 1
– Greater homogeneity of groups makes results more deterministic

• (At least, I always hope for this)
– Hence, we should get lower within-group variance upon adjusting 

for prognostic variables
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Ex: Diff of Indep Proportions
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Precision with Odds

• When analyzing odds (a nonlinear function of the mean), 
adjusting for a precision variable results in more extreme 
estimates
– odds = p / (1-p)
– odds using average of stratum specific p is not the average of 

stratum specific odds

• Generally, little “precision” is gained due to the mean-variance 
relationship
– Unless the precision variable is highly prognostic

194

Precision with Hazards

• When analyzing hazards, adjusting for a precision variable results 
in more extreme estimates

• The standard error tends to still be related to the number of 
observed events
– Higher hazard ratio with same standard error  greater precision

195

Adjustment for Covariates

• We “adjust” for other covariates
– Define groups according to

• Predictor of interest, and
• Other covariates

– Compare the distribution of response across groups which
• differ with respect to the Predictor of Interest, but
• are the same with respect to the other covariates

– “holding other variables constant”

196

Unadjusted vs Adjusted Models

• Adjustment for covariates changes the scientific question
– Unadjusted models

• Slope compares parameters across groups differing by 1 unit in 
the modeled predictor

– Groups may also differ with respect to other variables
– Adjusted models

• Slope compares parameters across groups differing by 1 unit in 
the modeled predictor but similar with respect to other modeled 
covariates 
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Interpretation of Slopes

• Difference in interpretation of slopes

– β1 = Compares  for groups differing by 1 unit in X
• (The distribution of W might differ across groups being compared)

– γ1 = Compares  for groups differing by 1 unit in X, but agreeing in their 
values of W

  iiii WXWXg  210,  :Model Adjusted 

  ii XXg  10     :Model Unadjusted 
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General Results

• These questions can not be answered precisely in the general 
case
– However, in linear regression we can derive exact results
– These will serve as a basis for later examination of

• Logistic regression
• Poisson regression
• Proportional hazards regression

200

Linear Regression

• Difference in interpretation of slopes

– β1 = Diff in mean Y for groups differing by 1 unit in X
• (The distribution of W might differ across groups being compared)

– γ1 = Diff in mean Y for groups differing by 1 unit in X, but agreeing in 
their values of W

  iiiii WXWXYE  210,  :Model Adjusted 

  iii XXYE  10     :Model Unadjusted 
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Relationships: True Slopes
• The slope of the unadjusted model will tend to be

• Hence, true adjusted and unadjusted slopes for X are estimating the 
same quantity only if

– ρXW = 0   (X and W are truly uncorrelated), OR

– (no association between W and Y after adjusting for X)

211 



X

W
XW

02 

202

Relationships: Estimated Slopes
• The estimated slope of the unadjusted model will be

• Hence, estimated adjusted and unadjusted slopes for X are equal only if

– rXW = 0   (X and W are uncorrelated in the sample, which can be 
arranged by experimental design), OR

– (which cannot be predetermined, because Y is random)

– sW = 0   (W is controlled at a single value in which case rXW = 0)
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Relationships: True SE
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Relationships: True SE
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Relationships: Estimated SE
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Relationships: Estimated SE
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Residual Squared Error
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Relationships: Estimated SE
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Special Cases

• Behavior of unadjusted and adjusted models according to 
whether
– X and W are uncorrelated (no association in means)
– W is associated with Y after adjustment for X
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gConfoundinPrecision0

00
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2
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XWXW rr

210

Simulations

• Unadjusted and adjusted estimates of treatment effect as a 
function of
– Effect of a third covariate on mean outcome
– Association between third covariate and treatment

• Difference in mean covariate
• Difference in median covariate
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Linear Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0 0.00   1.0   1.0 1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)  0.0 (0.21)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.22)     
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Linear Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0 0.00   1.0   1.0 1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)  0.0 (0.21)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.22)
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Linear Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0 0.00   1.0   1.0 1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)  0.0 (0.21)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.22)     
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Linear Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0 0.00   1.0   1.0 1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)  0.0 (0.21)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.22)
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Linear Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0 0.00   1.0   1.0 1.0 (0.28)      1.0 (0.20)

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)  0.0 (0.21)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.22)
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Linear Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0 0.00   1.0   1.0 1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)  0.0 (0.21)

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.22)     
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Logistic Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.42)      0.0 (0.42)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.40)      0.0 (0.42)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.42)      0.0 (0.43)     

Precision      0.0    0.0 0.00   1.0   1.0 0.8 (0.43)      1.0 (0.49)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.43)  0.0 (0.48)     

Confound     0.0    0.3    0.15   1.0   0.0         0.2 (0.41)  0.0 (0.47)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.41)     0.0 (0.47)
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Logistic Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.42)      0.0 (0.42)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.40)      0.0 (0.42)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.42)      0.0 (0.43)     

Precision      0.0    0.0 0.00   1.0   1.0 0.8 (0.43)      1.0 (0.49)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.43)  0.0 (0.48)     

Confound     0.0    0.3    0.15   1.0   0.0         0.2 (0.41)  0.0 (0.47)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.41)     0.0 (0.47)          
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Logistic Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.42)      0.0 (0.42)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.40)      0.0 (0.42)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.42)      0.0 (0.43)     

Precision      0.0    0.0 0.00   1.0   1.0 0.8 (0.43)      1.0 (0.49)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.43)  0.0 (0.48)     

Confound     0.0    0.3    0.15   1.0   0.0         0.2 (0.41)  0.0 (0.47)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.41)     0.0 (0.47)          
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Logistic Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.42)      0.0 (0.42)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.40)      0.0 (0.42)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.42)      0.0 (0.43)     

Precision      0.0    0.0 0.00   1.0   1.0 0.8 (0.43)      1.0 (0.49)

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.43)  0.0 (0.48)     

Confound     0.0    0.3    0.15   1.0   0.0         0.2 (0.41)  0.0 (0.47)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.41)     0.0 (0.47)     
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Logistic Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.42)      0.0 (0.42)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.40)      0.0 (0.42)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.42)      0.0 (0.43)     

Precision      0.0    0.0 0.00   1.0   1.0 0.8 (0.43)      1.0 (0.49)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.43)  0.0 (0.48)     

Confound     0.0    0.3    0.15   1.0   0.0         0.2 (0.41)  0.0 (0.47)

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.41)     0.0 (0.47)     
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Proportional Hazards Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.21)      0.0 (0.22)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.21)     

Precision      0.0    0.0 0.00   1.0   1.0 0.7 (0.21)      1.0 (0.22)     

Confound     0.3    0.3    0.15   1.0   0.0         0.2 (0.21)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.1 (0.20)  0.0 (0.22)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.23)          

Next
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Proportional Hazards Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.21)      0.0 (0.22)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.21)     

Precision      0.0    0.0 0.00   1.0   1.0 0.7 (0.21)      1.0 (0.22)     

Confound     0.3    0.3    0.15   1.0   0.0         0.2 (0.21)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.1 (0.20)  0.0 (0.22)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.23)          

Next
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Proportional Hazards Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.21)      0.0 (0.22)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.21)     

Precision      0.0    0.0 0.00   1.0   1.0 0.7 (0.21)      1.0 (0.22)

Confound     0.3    0.3    0.15   1.0   0.0         0.2 (0.21)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.1 (0.20)  0.0 (0.22)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.23)

Next
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Proportional Hazards Regression

• Simulation results

Truth                               Estimates

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0 0.00   0.0   0.0 0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0 0.00   1.0   0.0         0.0 (0.21)      0.0 (0.22)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.21)     

Precision      0.0    0.0 0.00   1.0   1.0 0.7 (0.21)      1.0 (0.22)     

Confound     0.3    0.3    0.15   1.0   0.0         0.2 (0.21)  0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.1 (0.20)  0.0 (0.22)

Var Inflatn 0.0    1.0    0.45   0.0   0.0 0.0 (0.20)     0.0 (0.23)     

Next
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Precision: Linear Regression

• E.g., X, W independent in population (or completely randomized 
experiment) AND W associated with Y independent of X
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Precision: Logistic Regression

• Adjusting for a precision variable 
• Deattenuates slope away from the null
• Standard errors reflect mean-variance relationship

– Substantially increased power only in extreme cases
» (OR > 5 for equal samples sizes of binary W)
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Precision: Poisson Regression

• Adjusting for a precision variable 
• No effect on the slope (similar to linear regression)

– log ratios are linear in log means
• Standard errors reflect mean-variance relationship

– Virtually no effect on power
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Precision: PH Regression

• Adjusting for a precision variable 
• Deattenuates slope away from the null
• Standard errors stay fairly constant

– (Complicated result of binomial mean-variance)
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Lin Reg: Stratified Randomization

• Stratified (orthogonal) randomization in a designed experiment
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Special Case: Baseline Adjustment

• Options
– Final only (throw away baseline)

• V = 2σ2

– Change (final – baseline)
• V = 4σ2 (1 – ρ)

– ANCOVA (change or final adj for baseline
• V = 2σ2 (1 – ρ2)

232

Ex: ANCOVA (Baseline Adjustment)
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Comparison of Study Designs

• Single Arm: Mean; absolute reference      N=    25
• Single Arm: Mean; historical data                      50       

• Two Arms : Diff in Means                                 100
• Two Arms : Diff in Mean Change (r = 0.3)       140
• Two Arms : Diff in Mean Change (r = 0.8)         40

• Two Arms : ANCOVA (r = 0.3)                           81
• Two Arms : ANCOVA (r = 0.8)                           36

• Cross-over: Diff in Means (r = 0.3)                    70
• Cross-over: Diff in Means (r = 0.8)                    20
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General Comments: Alternative

• What alternative to use?
– Minimal clinically important difference (MCID)

• To detect? (use in sample size formula)
• To declare significant? (look at critical value)

– Subterfuge: 80% or 90%
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General Comments: Level

• What level of significance?
– “Standard”: one-sided 0.025, two-sided 0.05
– “Pivotal”: one-sided 0.005?

• Do we want to be extremely confident of an effect, or confident of 
an extreme effect

236

General Comments: Power

• What power?
– Science: 97.5% 

• Unless MCID for significance ~50%
– Subterfuge: 80% or 90%
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Role of Secondary Analyses

• We choose a primary outcome to avoid multiple comparison 
problems
– That primary outcome may be a composite of several clinical 

outcomes, but there will only be one CI, test

• We select a few secondary outcomes to provide supporting 
evidence or confirmation of mechanisms
– Those secondary outcomes may be 

• alternative clinical measures and/or 
• different summary measures of the primary clinical endpoint

238

Secondary Analysis Models

• Selection of statistical models for secondary analyses should 
generally adhere to same principles as for primary outcome, 
including intent to treat

• Some exceptions:
– Exploratory analyses based on dose actually taken may be 

undertaken to generate hypotheses about dose response
– Exploratory cause specific time to event analyses may be used to

investigate hypothesized mechanisms
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Subgroups

• Testing for effects in K subgroups
– Does the treatment work in each subgroup?
– Bonferroni correction: Test at α / K

• No subgroups:                                          N = 100
• Two subgroups:                                        N = 230

• Testing for interactions across subgroups
– Does the treatment work differently in subgroups?

• Two subgroups:                                        N = 400
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Additional Constraints

• Safety analyses
– Often there is a minimal number needed to treat in order to have

enough data to rule out unacceptably high rates of extremely 
serious adverse events

• “3 over n rule” as confidence bound when no such events 
observed

• Subgroup analyses
– May need sufficient data to examine effects in important 

subgroups


