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— Sample Size Calculation

Basic Premise

* There are two types of people in the world:

— those who dichotomize everything, and

— those who don't.
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Classes of Statistical Models
Breiman (2000): The two approaches to data analysis
— Model based (e.g., regression)
Vs
Algorithmic (e.g., trees, neural nets)

This lecture:
— (Semi)Parametric vs distribution-free (nonparametric)
— Frequentist vs Bayesian
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Clinical Trial Setting

I
Clinical Trials: Experimentation in human volunteers
Designed experiments

+ Scientific (epi, basic, clinical) optimality criteria

« Efficiency
Human volunteers

* Individual and group ethics
Industrial sponsors

» Economic optimality criteria
Regulatory agencies

* Require credible data, data analysis

+ Entire analysis plan specified prior to gathering any data
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Ultimate Goal

* At the end of the study we want to provide estimates of treatment
effect and quantification of the strength of statistical precision
— Estimate of the treatment effect
+ Single best estimate
* Range of reasonable estimates

— Decision for or against hypotheses
+ Binary decision
* Quantification of strength of evidence

Inferential Paradigms

Two complementary ways to quantify the evidence about
hypotheses
— (Different people have different standards of evidence)

Are the observed data what we would reasonably expect to see
under a specific hypothesis?

— (The frequentist approach using Pr (X| 6 ))

Based on the observed data, what is our strength of belief about
a specific hypothesis?
— (The Bayesian approach using Pr (6 | X ) )
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(Semi)Parametric vs Distribution-Free

* Analysis of the data is generally in the context of a parametric,
semiparametric, or distribution-free (nonparametric) model

— Parametric models assume a known shape for the distribution of
the data

— Semiparametric models assume that the shape is similar in some
way across groups, but do not otherwise make any assumptions
about the exact shape of the distribution

— Distribution-free models make no assumption about how the
shape of the distribution might be similar (or different) across
groups
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Probability Models for Inference

Frequentist vs Bayesian

Where am | going?
Scientific proof is adversarial. We have to address the
concerns of skeptical observers.

The frequentist and Bayesian paradigms for inference are
complementary, and we will want to accommodate both
approaches

April 8, 2013

Notation

* A general framework

Target of inference: @ (finite dimensional)
Observations : Y, Y,

Joint distribution : p (y, 5)

10

Frequentist Probability Model

Frequentist inference considers the sampling distribution of the
statistic across conceptual replications of the experiment

A particular value of é used in the conditional sampling density
is termed a “hypothesis”

Frequentists usually do not explicitly consider the joint distribution
of the data and the parameter, instead they just consider every

conditional distribution separately
11

Statistical Design of Clinical Trials, SPR 2013

Frequentist Point Estimation

» Typical methods for finding point estimates

— The hypothesis for which the observed statistic is the mean,
median, or mode of the sampling distribution, or

— The hypothesis for which the sampling density at the observed
data is highest

» Optimality of point estimates typically judged by
— Consistency: With an infinite sample size we know the truth

V@e@:(HW)%pH
— Minimal bias (or MSE) across repeated experiments

bias(é)z E(H: | 9) -0

12
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Frequentist Interval Estimation
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+ Confidence intervals (confidence sets)

— The set of hypotheses for which we might reasonably expect to
obtain the observed data

» Typical methods for two sided Cl
— For some level of confidence defined by a, and
— For some definition O of the ordering of R"

CI(V;a)={§:%< Pr(\? < y|§)<1_%}

» These CI will have the desired “coverage probability”

Pr(g <C1(V:a) 6)=1-a
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Frequentist Interval Estimation

* Usually the ordering is based on some statistic

14

Frequentist Interval Estimation

+ Sometimes we choose orderings that also depend upon é

— E.g., likelihood ratio ordering from “inverting LR test”

p(vl|é=é) p(vz|é=éj
<y, o <

ply,16=6,) " ply,16=6,)
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Frequentist Hypothesis Testing

* Hypotheses

For®,n0,=¢: H,:0c®, vs H,:0c0,

* Reject a hypothesis for which the observed data is too rare

— For some critical value, the type 1 erroris

& = max Pr(\? <, €4,
0€%0

— For some specified alternative hypothesis the power is
Pwr, (9)= Pr(Y <o C| 6’)

16
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Frequentist Hypothesis Testing

+ Typically, for some specified ordering
— We fix the type 1 error to some suitably low level a
— We then find a critical value c that achieves that type 1 error
— We then compute the power curve
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Frequentist Hypothesis Testing
In some settings we can define “optimal” tests

— Simple hypotheses: Neyman-Pearson lemma tells us that the
likelihood ratio ordering provides the MP-a test

— Composite hypotheses with monotone likelihood ratio: Karlin-
Rubin theorem provides one-sided UMP-a test

— In two-sided tests, we sometimes appeal to uniformly most
powerful unbiased (UMPU) tests

* Unbiased tests:

—

v0,c0,,6,c0,: Pur,(d,)<Pwr, ()

18

Bayesian Probability Model

+ Bayesian inference considers the probability distribution for the
true summary measure conditioned on the observed data and an
assumed prior distribution

o(617)- I pp(\?lé)/l(é)

(V16)4(6)do

where
/l(é)z j p(\?, é)d\f is a prior distribution for &

+ Bayesians most often specify a frequentist probability model and
a prior distribution to induce the joint distribution 19
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Bayesian Probability Space
Bayesian inference considers the probability distribution for the
parameter measuring treatment effect

1(§)= I p(\?, é)d\f is a prior distribution for &
Possible scientific relevance of the prior distribution

— Describes behavior of scientists: A frequentist probability

» “Of all experimental hypotheses that might have been selected
for further investigation, how likely is the selected treatment to be
truly beneficial?”

— Quantifies subjective uncertainty at an individual level

* “What is a particular scientists’ belief about the treatment effect?”
— Consensus subjective prior

* “What is the population average of individual priors?

— But posterior probabilities using an average prior may not
correspond to average of individual posterior probabilities 20
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Bayesian Estimation

Point estimates:

— A summary measure of the posterior probability distribution
(mean, median, mode)

Posterior mean 6 = E(é |\7)

Interval estimates: Credible intervals
— A set of hypotheses having the highest posterior density

1-a, HPD credible interval :
Cl(c)= {5: p(§|\7)> c}
a, =1-Pr(d eCI(c)|Y)

21
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Bayesian Decisions

Tests:
— Reject a hypothesis for which the posterior probability is too low
— Quantify the posterior probability of the hypothesis

Posterior probability of null Pr(é €0, N)

22

Statistical Inference
Information required for inference
— Frequentist
» Tests: need the sampling distribution under the null
» Estimates: need the sampling distribution under all hypotheses

— Bayesian

+ Tests and estimates: need the sampling distribution under all
hypotheses and a prior distribution

23
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Statistical Inference

Both approaches have their adherents

Frequentist
— A precise (objective) answer to not quite the right question

— Well developed nonparametric and moment based analyses (e.g.,
GEE)

— Conciseness of presentation

Bayesian
— A vague (subjective) answer to the right question

— Adherence to likelihood principle in parametric settings (and
coarsened approach)

24
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* Goals of “drug discovery” are similar to those of diagnostic testing
in clinical medicine

+ We want a “drug discovery” process in which there is
— A low probability of adopting ineffective drugs
+ High specificity (low type | error)

— A high probability of adopting truly effective drugs
» High sensitivity (low type Il error; high power)

— A high probability that adopted drugs are truly effective
* High positive predictive value
+ Will depend on prevalence of “good ideas” among our ideas

25
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Distinctions without Differences

There is no such thing as a “Bayesian design”

Every RCT design has a Bayesian interpretation
— (And each person may have a different such interpretation)

Every RCT design has a frequentist interpretation
— (In poorly designed trials, this may not be known exactly)

26

Diagnostic Medicine: Evaluating a Test
» We condition on diagnoses (from gold standard)
— Frequentist criteria: We condition on what is unknown in practice

» Sensitivity: Do diseased people have positive test?
— Denominator: Diseased individuals
— Numerator: Individuals with a positive test among denominator

» Specificity: Do healthy people have negative test?
— Denominator: Healthy individuals
— Numerator: Individuals with a negative test among denominator

27
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Diagnostic Medicine: Using a Test
We condition on test results
— Bayesian criteria: We condition on what is known in practice

Pred Val Pos: Are positive people diseased?
— Denominator: Individuals with positive test result
— Numerator: Individuals with disease among denominator

Pred Val Neg: Are negative people healthy?
— Denominator: Individuals with negative test result
— Numerator: Individuals who are healthy among denominator

28
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Points Meriting Special Emphasis
» Discover / evaluate tests using frequentist methods
— Sensitivity, specificity
» Consider Bayesian methods when interpreting results for a given
patient
— Predictive value of positive, predictive value of negative

» Possible rationale for our practices
— Ease of study: Efficiency of case-control sampling
— Generalizability across patient populations
+ Belief that sensitivity and specificity might be
* Knowledge that PPV and NPV are not
— Ability to use sensitivity and specificity to get PPV and NPV
» But not necessarily vice versa

29

Bayes’ Rule

* Allows computation of “reversed” conditional probability

» Can compute PPV and NPV from sensitivity, specificity
— BUT: Must know prevalence of disease

sensitivity x prevalence
PPV =
sensx prevalence + (1-spec)x(L— prevalence)

specificity x (1— prevalence)

NPV =
specx(L— prevalence) + (1-sens)x prevalence

30

Application to Drug Discovery

» We consider a population of candidate drugs
* We use RCT to “diagnose” truly beneficial drugs

» Use both frequentist and Bayesian optimality criteria

— Sponsor:

+ High probability of adopting a beneficial drug (frequentist power)
— Regulatory:

» Low probability of adopting ineffective drug (freq type 1 error)

» High probability that adopted drugs work (posterior probability)
— Public Health (frequentist sample space, Bayes criteria)

» Maximize the number of good drugs adopted

* Minimize the number of ineffective drugs adopted

31

Slightly Different Setting

» Usually we are interested in some continuous parameter
— E.g., proportion of infections cured is 0 < p < 1

» “Prevalence” is replaced by a probability distribution

— Prior (subjective) probability of selecting a drug to test that cures
proportion p of the population

» Sum over two hypotheses replaced by weighted average (by
some subjective prior) over all possibilities
pr(p| )= Pr(BIp)xPr(p)
r(plp)=+—r
[Pr(pI p)xPr(p)dp

_ freqsampdistn x prior prob
weighted average freq samp distn

32
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Frequentist Inference

Control type 1 error: False positive rate
— Based on specificity of our methods

Maximize statistical power: True positive rate
— Sensitivity to detect specified effect

Provide unbiased (or consistent) estimates of effect
Standard errors: Estimate reproducibility of experiments

Confidence intervals

Criticism: Compute probability of data already observed
— “A precise answer to the wrong question”

33
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Bayesian Inference
Hypothesize prior prevalence of “good” ideas
— Subjective probability

Using prior prevalence and frequentist sampling distribution
— Condition on observed data
— Compute probability that some hypothesis is true
» “Posterior probability”
— Estimates based on summaries of posterior distribution

Criticism: Which presumed prior distribution is relevant?
— “A vague answer to the right question”

34

Frequentist vs Bayesian

Frequentist and Bayesian inference truly complementary

| contend that both frequentist and Bayesian inference can
provide evidence for treatment effects

Frequentist: Design so the same data not likely from null / alt

— (This is in some sense placing equal emphasis on both
hypotheses.)

Bayesian: Explore updated beliefs based on a range of priors

35
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Frequentist vs Bayesian

Bayes rule tells us that we can parameterize the positive
predictive value by the type | error and prevalence
— Maximize new information by maximizing Bayes factor

— With simple hypotheses, the steeper the power curve, the greater
discrimination between hypotheses

power x prevalence

PPV =
power x prevalence + type I err x(1— prevalence)

PPV power " prevalence
1-PPV typelerr 1- prevalence

posterior odds = Bayes Factor x prior odds

36
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Bayes Factor
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In the more general case, Bayes Factor can be computed to
compare two sets of hypotheses

— But it will then depend on the prior

37
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Statistical Inference

| take the view that both approaches need to be accomodated in
every analysis

— Goal of the experiment is to convince the scientific community,
which likely includes believers in both standards for evidence

— Bayesian priors should be chosen to reflect the population of
priors in the scientific community

38

The Problem As | See It

Scientific criteria dictate using distribution-free probability models
insofar as possible and presenting both frequentist and Bayesian
inference

Commonly used frequentist statistics are often easily interpreted
as distribution-free

— (We often calculate the variance wrong for my preferred scientific
hypotheses)

Bayesian methods are most often couched in parametric models
— Distribution-free methods only poorly developed

39
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The Ultimate Goal

Development of a framework for the analysis of clinical trial data
in which
the hypotheses being tested are defined for distribution-free
probability models

« (distribution-free model is superset of parametric alternatives)
— tests and estimates are consistent
— both Bayesian and frequentist inference are possible
the methods can easily be used by nonstatisticians

40
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The Ultimate Goal

* Major Issues:

Distribution-free interpretation of summary measures

Specification of hypotheses

Estimation of sampling distributions
» Variance and mean-variance relationships

Dual Bayesian approaches for each test
+ Suitable families of priors

41
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Probability Models for Inference

(Semi)Parametric vs Distribution-Free Models

Where am | going?

Statistical methods are most often derived in the context of
parametric or semi-parametric probability models.

The “unconscious” frequentist gravitates towards models
that are robust across distributions.

We will want to use the same models for Bayesian
inference.

42

Setting: Two Arm Clinical Trials

Theorem (Fulghum):

All you really need to know,
can be learned in kindergarten.

Corollary (Emerson):

Most the statistics you really
need to know can be learned
in Biost 514 and Stat 512.
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Setting: Two Arm Clinical Trials

"Because the simplest thing
statisticians
need to do is compare two groups.
And we don't know how to do it."

- Attributed to Fred Mosteller when asked by
Dr. Elliot Antman (a well known cardiologist)
to explain why we need so many types of
two sample comparison procedures.

44
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Probability Models

| define parametric, semiparametric, and nonparametric models in
the two independent sample setting
— My definition of semiparametric models is a little stronger than

some statisticians
* There are probability models intermediate to my semiparametric
and distribution-free categories (e.g., “stochastically ordered”)
— The distinction is to isolate models with assumptions that | think

too strong

+ Notation for two sample probability model

iid
Treatment :  Y,...,Y,~F
iid
Control : Xiyeory Xy~

45

Parametric Probability Models

* F, G are known up to some finite dimensional parameter vectors

F(t)=v(t ®,)
~ 9l b,

6(t)=¥(t &, )

where :
¥(.-)  has known form (in both t and @)
@ is finite dimensional and unknown

46

Parametric Probability Models

* Examples

Normal : Yi~N( ,02) Xj~N(V,rz)

Bernoulli: Y, ~B(@L x) X, ~B@Lv)
Poisson: Y, ~ P(u) X, ~P(v)
Exponential : Y, ~ E(u) X, ~E()

47

Parametric Probability Models

» Target of inference
— Because the shape of the distribution is entirely known, the target
of inference can be expressed as a function of the unknown

parameters
6=h(d,,d,)
— If the goal is to estimate some particular functional of the
distribution, it must be recognized that the target of inference in
the most general case will involve the shape of the distribution

+ “functional” includes operations on its function arguments such
as integration, inversion, etc

48
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Semiparametric Probability Models
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* Forms of F, G are unknown, but related to each other by some

finite dimensional parameter vector
— F can be determined from G and a finite dimensional parameter

— (Most often: under the null hypothesis, F = G)

49

Semiparametric Probability Models

* Forms of F, G are unknown, but related to each other by some
finite dimensional parameter vector

— F can be determined from G and a finite dimensional parameter
F(t)="¢(t, ®,)
G(t)=t, &, =0)

¥(-)  hasunknown form (int)
D, = 0 isfinite dimensional and known (identifiability)

@, is finite dimensional and unknown

50

Semiparametric Probability Models

* Examples
Shift : F(t)=G(t-u)
Shift-scale: F(t)= G(t_—ﬂj
o
Accel failure: F(t)=G(ty)

51

» Target of inference
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Semiparametric Probability Models

— Most often, the target of inference is some function of the
unknown finite dimensional parameter

» Recall that for identifiability, that parameter measures the
relationship between F and G

0=h(®,)
— If the goal is to estimate some particular functional of the
distribution, it must be recognized that the target of inference in

the most general case will also involve the infinite dimensional
parameter measuring the shape of the distribution

6=ii(®,, ()

52

April 8, 2013
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Distribution-Free Probability Models

Forms of F, G are completely arbitrary and unknown
— Each distribution is an infinite dimensional parameter

An infinite dimensional parameter is needed to derive the form of
F from G

53
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Distribution-Free Probability Models

+ Target of inference

— The target of inference in the most general case is regarded as
some functional contrast across the distribution functions Fand G

0 =7(F().G())

— Most often, however, this is a contrast of functionals across the
distributions

54

The Problem

In the development of statistical models, and even moreso in the
teaching of statistics, parametric probability models have received
undue emphasis

Examples:

t test is typically presented in the context of the normal probability
model

theory of linear models stresses small sample properties
random effects specified parametrically

Bayesian (and especially hierarchical Bayes) models are replete
with parametric distributions

55
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The Problem

* ASSERTION: Such emphasis is not typically in keeping with the

state of knowledge as an experiment is being conducted

* The parametric assumptions are more detailed than the

hypothesis being tested, e.g.,:

— Question: How does the intervention affect the first moment of the
probability distribution?

— Assumption: We know how the intervention affects all of the 2nd,
3rd, ..., @ central moments of the probability distribution.

56
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Arguments Against (Semi)Parametrics
+ Conditions under which an intervention might be expected to
affect many aspects of a probability distribution

» Example 1: Cell proliferation in cancer prevention
— Within subject distribution of outcome is skewed (cancer is a focal
disease)
— Such skewed measurements are only observed in a subset of the
subjects
— The intervention affects only hyperproliferation (our ideal)

57

Arguments Against (Semi)Parametrics

+ Conditions under which an intervention might be expected to
affect many aspects of a probability distribution (cont.)

» Example 2: Treatment of hypertension
— Hypertension has multiple causes
— Any given intervention might treat only subgroups of subjects
(and subgroup membership is a latent variable)
— The treated population has a mixture distribution
* (and note that we might expect greater variance in the group with
the lower mean)

58

Arguments Against (Semi)Parametrics

+ Conditions under which an intervention might be expected to
affect many aspects of a probability distribution (cont.)

+ Example 3: Effects on rates
— The intervention affects rates
— The outcome measures a cumulative state
— Arbitrarily complex mean-variance relationships can result

59

The Problem

* These and other mechanisms would seem to make it likely that
the problems in which a fully parametric model or even a
semiparametric model is correct constitute a set of measure zero

— Exception: independent binary data must be binomially distributed
in the population from which they were sampled randomly
(exchangeably?)

60
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Optimality of Inference
+ Impact on what we teach about optimality of statistical models

— Clearly, parametric theory may be irrelevant in an exact sense
(though as guidelines it is still useful)

— Much of what we teach about the optimality of nonparametric
tests is based on semiparametric models
* e.g., Lehmann, 1975: location-shift models

61
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Example: Wilcoxon Rank Sum Test

Common teaching:
— Not too bad against normal data
— Better than t test when data have heavy tails

More accurate guidelines:

— Above holds when a shift model holds for some monotonic
transformation of the data

— If propensity to outliers (mixture distributions) is different between
groups, the t test may be better even in presence of heavy tails

— In the general case, the t test and the Wilcoxon are not testing the
same summary measure

62

Distribution-Free Probability Models

» Target of inference

— The target of inference in the most general case is regarded as
some functional contrast across the distribution functions F and G

0 =7 (F()G())

— Most often, however, this is a contrast of functionals across the
distributions

6 =h(7(F()).7(G())

63
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Targets of Inference

6 =h(7(F().7(G()

— Difference (or ratio) of mean blood pressures

— Ratio of geometric mean blood pressures

— Ratio (or difference) of median blood pressures

— Difference (or ratio) of proportion with SBP < 120

— Ratio (or difference) of odds of having SBP < 120

— Ratio (or difference) of average hazard for time to SBP < 120

=1(F()G())

— Cox PH ratio of hazard for time to SBP < 120

— Median of difference in blood pressures

— Probability that X < Y

— Supremum of | F(t) - G(t) | 64

16
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Statistical Models

How are (semi)parametric assumptions really used in statistical
models?

— Choice of functional for comparisons

Formula for computing the estimate of the functional
Distributional family for the estimate

— Mean-variance relationship across alternatives

Shape of distribution for data

65

Choice of Functional for Comparisons

Parametric: Driven by efficiency of functional for the particular
parametric family

— Normal: use mean

— Lognormal: use (log) geometric mean
— Double exponential: use median

— Uniform: use maximum

Semiparametric: Choose functional for scientific relevance, etc.,
then adopt a semiparametric model in which desired functional is
basic to model

— Survival data: consider hazard ratio and use proportional hazards

66

Hierarchy for Choice of Functional

Better bases for choosing summary measure for decisions in
order of importance (nonparametric)

— Current state of scientific knowledge

— Scientific (clinical) relevance

— Potential for intervention to affect the measure

— Statistical accuracy and precision of analysis

67

Criteria: Current State of Knowledge

Scientific investigation proceeds through a series of
studies/experiments

Initial studies refine hypotheses to be examined in later studies

— Relevance of a binary search: Divide the set of all possible
hypotheses into two sets to be discriminated between in the initial
experiment

E.g., First try to characterize first order trends, later try to
determine exact shape of dose-response

68
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Criteria: Scientific Relevance
E.g., Goal is predicting totals in a larger population

— Health services research: mean cost of different health care
strategies

E.g., Sensitivity to detecting differences in tendency to outlying
values

— Cancer prevention: mean cell proliferation rates within a person
(cancer is an outlier)

— Economic policy: Sociology of wealth distribution (median) vs
economic force (mean)

E.g., Important clinical thresholds
— Sepsis trials: 28 day mortality rather than time to death

69
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Criteria: Potential for Effect

E.g., Treatment is designed to affect outliers
— Aspirin only lowers temperature in fever
— Ideal cancer therapy only decreases proliferation of cancer cells

70

Criteria: Statistical Precision

E.g., Outliers decrease the precision of estimating means relative
to precision of estimating geometric means or medians

E.g., Dichotomization of data may result in a loss of efficiency

71
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Statistical Models

How are (semi)parametric assumptions really used in statistical
models?

— Choice of functional for comparisons

Formula for computing the estimate of the functional
Distributional family for the estimate

— Mean-variance relationship across alternatives

Shape of distribution for data

72
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Parametric Estimate of Functional
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Estimate parameters and then derive summary measures from
parametric model

E.g., estimating the median with aymptotically efficient MLE

— Normal: sample mean
— Exponential: sample mean / log(2)
— Lognormail: sample geometric mean

Double exponential: sample median

73
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Semiparametric Estimate of Functional
Parameter is typically fundamental to probability model

— Transform one group by the parameter and obtain the same
distribution as the other group

E.g., proportional hazards model
— Hazard ratio estimate averages hazard ratios at each failure time

E.g., survival cure model (Ibrahim, 1999, 2000)

— Proportion p; is cured (survival probability 1 at «) in the i-th group

— Noncured group has survival distribution modeled parametrically
(e.g., Weibull) or semiparametrically (e.g., proportional hazards)

— The problem as | see it: Incorrect assumptions about the
nuisance parameter can bias the estimation of the treatment
effect®0=p, - p,

74

Distribution-Free Estimate of Functional

(AN R NN NN NN NN ENNENNENRNNENRENNENNENNENNNNN]
Estimate summary measures from nonparametric empirical
distribution functions
E.g., use sample median for inference about population medians

Note:

— Often the nonparametric estimate agrees with a commonly used
parametric or semiparametric estimate
* Interpretation may depend on sampling scheme, however
— The difference will come in the computation of the standard errors

75
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Statistical Models

How are (semi)parametric assumptions really used in statistical
models?

— Choice of functional for comparisons

Formula for computing the estimate of the functional

Distributional family for the estimate
— Mean-variance relationship across alternatives
Shape of distribution for data

76
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(Semi)Parametric Distribution of Estimate
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» Parametric: Use probability theory to derive distribution of
estimate
— E.g., estimating the mean
* Normal: sample mean is normal
+ Exponential: sum is gamma
* Lognormal: log geometric mean is normal

+ Semiparametric:
— Small sample properties: Conditional distributions based on
permutation

— Large sample properties: Asymptotics

77
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Distribution Free Estimates

* Nonparametric: Asymptotic normal theory (almost always)
— Most nonparametric estimators involve a sum somewhere:
Central limit theorem holds (like it or not)
* Thus gamma distributions converge to a normal...
— Estimates derived from empirical CDF, which converges
asymptotically to Brownian bridge process

78

Later: Reliance on Asymptotics

+ We use asymptotic theory as justification for approximations
based on the normal distribution

Vn(6-6)-, N(0.v(6))

* In RCT, the sample size at which the approximation holds

depends on four aspects (in approx order from lowest to highest)
— Approximate normality
» Depends on how far out in the tails of the distribution we need
— Nearly constant mean-variance relationship
— Discreteness of data
— Local alternatives used in experimental sequential design

* We tend to design studies to have power less than 1
79
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Statistical Models

* How are (semi)parametric assumptions really used in statistical
models?

— Choice of functional for comparisons

Formula for computing the estimate of the functional
Distributional family for the estimate

— Mean-variance relationship across alternatives
Shape of distribution for data

80
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Sampling Distributions Sampling Distributions

+ Asymptotically, most the summary measures considered can be 2
shown to have a limiting normal distribution )? N o
— (exception is the supremum of the difference between the cdf’s) H, n

+ In this setting, we need only estimate the variance of the
sampling distribution under specific hypotheses 1

Xo5 ~ N| mdn(X),

— Formulas 2
— Bootstrapping within groups (Population model) 4f (mdn(x ))
— Permutation distributions (Randomization model) Hg mn mn(m +n +1)
U=>Ty~)~N ,
i I 2 12
81 82
Sampling Distributions Sampling Distributions
* In most cases, however, it must be recognized that we can only » Example: Two sample test of binomial proportion
estimate the variance under the truth, which may not correspond
to a hypothesis of interest
+ If the intervention can affect the variance of the summary N px (1_ px ) a_ pY (l_ pY )
measures, then we must account for a mean-variance Px Pxs n Py Py m

relationship when considering different hypotheses

Var(é: Py — ﬁv): Px (1n_ pX)+ Py (1n: pY)

83 84
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Sampling Distributions
Example: Two sample test of binomial proportion
— Estimated variance is subject to
» Sampling variability
« Difference between the truth and the hypothesis

85
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Sampling Distributions
+ Estimating mean variance relationships

— May not be too important for frequentist tests of the null
hypothesis, because convention often dictates the null variance
we should use

» Use randomization and/or population variances in adversarial
argument

— However confidence intervals and all Bayesian inference are
statements about what data would arise under a variety of
hypotheses

* We must have some idea about how the variance might change
with the mean

86

Statistical Hypotheses

In comparing the distributions across groups using some
summary measure, there are two general formulations of the
hypotheses

— Randomization model - Hy: F = G

» Allows us to ignore possible treatment effects on aspects of the
distribution beyond that measured by 6

— Population model - Hy: 6 = 6,
+ Sensitive only to the value of the summary measure, thereby
allowing for the possibility that the intervention has other effects

87
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Statistical Hypotheses

« Example: t test assuming equal variances
iid iid

Xy oo Xy ~(,02) YooY, ~(r72) 7= m

m+n

T= ()?_Y_)_eo

S+ M

NI no? + (-7 )

(1— 72')02 +rr?

88
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Statistical Hypotheses
9900000000000 000000°OCCCITIOIOOIOTOOOYYTYS
Example: t test assuming equal variances (cont.)
— Type | error of test
» Randomization model: Correct, because unequal variances is an
alternative hypothesis
» Population model: Incorrect if variances are unequal and sample
sizes are unequal

89
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Statistical Hypotheses
Example: t test assuming equal variances (cont.)
— Consistency of test: With an infinite sample size, will every
alternative hypothesis be rejected with probability 1?

» Randomization model: Inconsistent test, because will not reject
with probability 1 unless means are different
» Population model: Consistent test

90

Statistical Hypotheses

Example: t test assuming unequal variances
— Population or randomization models
» Correct type | error
+ Consistent test
* (slightly less efficient under randomization model)

91
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Sampling Distributions
Example: Wilcoxon rank sum statistic
— It basically estimates Pr(X<Y) and the null variance is based on a
permutation distribution
* Inconsistent to test the randomization hypothesis
* Wrong size to test the population hypothesis
— (consider a bimodal distribution in one group)
— Bootstrapping could be used to find a consistent test of the
population hypothesis (under the truth)

* (Note, however, that the Wilcoxon is based on a bivariate
functional that is intransitive for location)

92
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Statistical Hypotheses
+ It seems most in keeping with the scientific setting to consider the
population model as the primary hypothesis
— However: The experiment must convince the scientific

community, and some skeptics might want proof under both
models

93
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Sampling Distributions

Possible approaches to the mean-variance relationship
estimation

— Explore various mean-variance relationships
» Bootstrap tilting could be used here

— Assume no mean-variance relationship

— Sensitivity analyses intermediate to the two, e.g.

Var(é): 6"

94

Sampling Distributions

» Possible approaches to the mean-variance relationship
estimation (cont.)
— A key issue is deciding how many observations are present for
estimating the mean-variance relationship
« If the control group can be used to estimate behavior under the

null and the treatment group under the alternative, then possibly
have two

« If an active intervention modifies the response in both groups or
in population model, then may only have one

95
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Statistical Models

How are (semi)parametric assumptions really used in statistical
models?

— Choice of functional for comparisons

Formula for computing the estimate of the functional
Distributional family for the estimate

— Mean-variance relationship across alternatives
Shape of distribution for data

96
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Statistical Models

Shape of distribution for data
— Only really an issue for prediction, which is not considered here

97
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Probability Models for Inference

Distribution-Free Bayesian Inference

Where am | going?

A simple approach to providing Bayesian inference in a
distribution-free probability model.

98

Bayesian Posterior Distribution

Derivation based on
— Density for data
— Prior for parameter

o) %, 7)- X Y16)al0

where
/1(5) is a prior distribution for &

99
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Nonparametric Bayes

Dirichlet process priors have been proposed for Bayesian
inference in the nonparametric setting

Motivation from categorical distributions

— Support of distribution is finite set of discrete points

— Multinomial distribution parameterizes probability of each value
— Dirichlet distribution is conjugate prior for multinomial

Application to nonparametric probability model
— The data is presumed to arise from a mixture distribution
— A Dirichlet distribution is presumed for the mixing parameters
— Possibly infinite number of component distributions allows
modeling of continuous distributions over a common support
» = Dirichlet process

100
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Dirichlet Process Priors

* The basic idea is most easily seen as the process of deriving the
Bayesian estimates
— Derivation considers a predictive data generation process

+ Basicidea
— His some base distribution (possibly continuous)
+ Defines the support of the family of distributions
» The presumed distribution in the absence of any data
— ais a concentration (or precision) parameter measuring the
relative belief in H or the empirical distribution of the data in
Bayesian predictive probability for next observation
* nth observation comes from H with probability a / (a +n—1)
+ nth observation comes from empirical cdf F,_, with probability
(n-1)/(@+n-1)

101

Dirichlet Process Priors: Properties
It can be shown that with enough data, the Dirichlet Process prior
will be consistent for a true distribution having the same support
as H

— The closer the true distribution is to H, the better the small sample
behavior (especially with a high value of the concentration
parameter a

However, it is difficult to quantify how the prior places mass on
particular distributions in a distribution-free sense
— E.g., how much mass is placed on bimodal distributions?

102

“Coarsened” Bayesian Models

» Modification regards estimate of summary measure as the data
— Use asymptotic distributions under population model

15 p(éléj A6)
{7 )_Jp(ém) 4(6)dd

where
/1(5) is a prior distribution for &

103

Impact of “Coarsening”

Relative to full parametric approach
We treat the estimate as if it is sufficient

— We ignore nuisance parameters, invoking consistency of
estimates

— We model a mean-variance relationship

We use the approximate normal distribution based on
asymptotics instead of the exact distribution

In many commonly used parametric or semi-parametric models,
the only loss is the use of the asymptotic approximation

— Sample mean is MLE in the regular normal (known variance),
binomial, Poisson, exponential probability models

— Hazard ratio is semi-parametric sufficient in proportional hazards

104
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Advantages / Disadvantages

9000000000000 00000000000000O0COCCTC

Distribution-free consistent estimates of parameter measuring
treatment effect

Specification of prior distributions on the parameter measuring
treatment effect

Furthermore, choice of normal priors allows a standardized
exploration of Bayesian inference across a space of priors

105

Standardized Presentation of Inference

The chief advantage of frequentist inference (to my mind) is that it
presents a standard for concise presentation of results

— Estimates, standard errors, P values, Cl

Bayesian analysis, on the other hand, requires such a
presentation for every prior

— Your prior does not matter to me

— A consensus prior will not capture the diversity of prior opinion

106

Sensitivity of Inference to Priors
Papers can present frequentist sampling distribution as the
“sufficient statistic” for Bayesian inference

In the context of the coarsened Bayes approach, we can adopt a

standard based on normal priors

— Conjugate distribution in the absence of a mean-variance
relationship

Two dimensional space of prior distributions
— Prior mean (pessimism)
— Prior standard deviation (dogmatism)
» Also can be measured as information in prior relative to that in
planned sample
Bayesian inference as a contour plot for each inferential quantity
— Posterior mean, limits of credible intervals, posterior probabilities

“Coarsened” Bayesian Posterior Distn

6, « N(e,lj
n

Prior distribution

0~N( 7%

Posterior distribution

o [Nesie
016 ~N T
02 72 62 T
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“Coarsened” Bayesian Posterior Distn

6, + N(B,KJ
n

Prior distribution

2
0~ N[g,rz =°’]
nO

Posterior distribution

n-. n
—0 +-2 5 2
9|§~N o " gl 1 _N ng,+né o
" n n n _n n+n, n+n,
=t~ It
o o o o
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Example

» Contour plots for Bayesian inference: Posterior mean

Mdn (Theta | M= 2, T= -0.01)

Power (lower) to Detect Theda
Q.890 0900 0500 D200 .ozy
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010 008 006 004 002 0o 002
Prior Median for Theta 0

Sensitivity Analyses
* In the presence of a mean-variance relationship, a more
complicated posterior results
— Can be numerically integrated or MCMC

» To the extent that people can only describe the first two moments
of their prior:
— A convenient standard for presentation

» But, normal prior is less informative than other priors having the
same mean and variance

* In any case, so long as the estimate and standard error is
presented in a paper, a reader can apply a more complicated
prior

111

Mean-Variance Relationship

Provide a prior distribution for summary measure that
incorporates a prior on the mean-variance relationship

Note that the concept of updating the prior is probably not valid

here, because there is really no added information about mean-

variance relationship

— The mean variance relationship is observed at two points (at
most)

112
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Ramifications
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The approach to using estimates as the data does mean that in
some cases we cannot regard that we are continually updating
our posterior

E.g.: The sample median of the combined sample is not
necessarily a weighted mean of the sample median from two
separate samples

113
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Ensuring Precision

Sample Size Estimation

Where am | going?

A common formula can be used for sample size estimation
in the frequentist distribution-free setting

We consider how study design affects sample size

114

Statistical Planning

Satisfy collaborators as much as possible
Discriminate between relevant scientific hypotheses
« Scientific and statistical credibility
Protect economic interests of sponsor
« Efficient designs
+ Economically important estimates
Protect interests of patients on trial
« Stop if unsafe or unethical
+ Stop when credible decision can be made
Promote rapid discovery of new beneficial treatments

115
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Sample Size Calculation
Traditional approach

— Sample size to provide high power to “detect” a particular
alternative

Decision theoretic approach
— Sample size to discriminate between hypotheses
+ “Discriminate” based on interval estimate
+ Standard for interval estimate: 95%
— Equivalent to traditional approach with 97.5% power

116
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Reporting Inference
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+ At the end of the study analyze the data

» Report three measures (four numbers)
— Point estimate
— Interval estimate
— Quantification of confidence / belief in hypotheses

17

Reporting Frequentist Inference

* Three measures (four numbers)

» Consider whether the observed data might reasonably be
expected to be obtained under particular hypotheses

— Point estimate: minimal bias? MSE?

— Confidence interval: all hypotheses for which the data might
reasonably be observed

— P value: probability such extreme data would have been obtained
under the null hypothesis

» Binary decision: Reject or do not reject the null according to
whether the P value is low

118

Reporting Bayesian Inference

* Three measures (four numbers)

+ Consider the probability distribution of the parameter conditional
on the observed data
— Point estimate: Posterior mean, median, mode
— Credible interval: The “central” 95% of the posterior distribution
— Posterior probability: probability of a particular hypothesis
conditional on the data

» Binary decision: Reject or do not reject the null according to
whether the posterior probability is low

119

Parallels Between Tests, Cls
« If the null hypothesis not in ClI, reject null
* (Using same level of confidence)

* Relative advantages
— Test only requires sampling distn under null
— Cl requires sampling distn under alternatives
— ClI provides interpretation when null is not rejected

120
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Scientific Information
* “Rejection” uses a single level of significance
— Different settings might demand different criteria

* P value communicates statistical evidence, not scientific
importance

* Only confidence interval allows you to interpret failure to reject
the null:
— Distinguish between
+ Inadequate precision (sample size)
+ Strong evidence for null

121

Hypothetical Example

+ Clinical trials of treatments for hypertension

» Screening trials for four candidate drugs
— Measure of treatment effect is the difference in average SBP at
the end of six months treatment

— Drugs may differ in
» Treatment effect (goal is to find best)
+ Variability of blood pressure

— Clinical trials may differ in conditions
* Sample size, etc.

122

Reporting P values

Study P value
A 0.1974
B 0.1974
C 0.0099
D 0.0099

123

Point Estimates

Study SBP Diff
A 27.16
B 0.27
C 27.16
D 0.27

124
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Point Estimates
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Study SBP Diff P value
A 27.16 0.1974
B 0.27 0.1974
C 27.16 0.0099
D 0.27 0.0099

125
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Confidence Intervals

Study SBP Diff 95% ClI P value
A 27.16 -14.14, 68.46 0.1974
B 0.27 -0.14, 0.68 0.1974
C 27.16 6.51, 47.81 0.0099
D 0.27 0.06, 0.47 0.0099

126

Interpreting Nonsignificance
Studies A and B are both “nonsignificant”
— Only study B ruled out clinically important differences

— The results of study A might reasonably have been obtained if the
treatment truly lowered SBP by as much as 68 mm Hg

127
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Interpreting Significance
+ Studies C and D are both statistically significant results
— Only study C demonstrated clinically important differences

— The results of study D are only frequently obtained if the
treatment truly lowered SBP by 0.47 mm Hg or less

128
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Bottom Line
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If ink is not in short supply, there is no reason not to give point
estimates, CI, and P value

If ink is in short supply, the confidence interval provides most
information

— (but sometimes a confidence interval cannot be easily obtained,
because the sampling distribution is unknown under the null)

129

Full Report of Analysis

Sample Size Calculation
Traditional approach

— Sample size to provide high power to “detect” a particular
alternative

Decision theoretic approach
— Sample size to discriminate between hypotheses
+ “Discriminate” based on interval estimate
+ Standard for interval estimate: 95%
— Equivalent to traditional approach with 97.5% power

131
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Study n SBP Diff 95% CI P value
A 20 27.16 -14.14, 68.46 0.1974
B 20 0.27 -0.14, 0.68 0.1974
C 80 27.16 6.51, 47.81 0.0099
D 80 0.27 0.06, 0.47 0.0099
130
Issues

9000000000000 O0CCCOOIOIOINOONONOIOONOINOIOITOTS
* Summary measure
— Mean, geometric mean, median, proportion, hazard...

+ Structure of trial
— One arm, two arms, k arms
— Independent groups vs cross over
— Cluster vs individual randomization
— Randomization ratio

+ Statistic
— Parametric, semi-parametric, nonparametric
— Adjustment for covariates

132

33



Lecture 2

Refining Scientific Hypotheses
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+ Scientific hypotheses are typically refined into statistical
hypotheses by identifying some parameter 6 measuring
difference in distribution of response

— Difference/ratio of means
Ratio of geometric means
Difference/ratio of medians
Difference/ratio of proportions
Odds ratio

Hazard ratio

133
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Inference

* Generalizations from sample to population

» Estimation

— Point estimates
— Interval estimates

* Decision analysis (testing)

— Quantifying strength of evidence

134

Measures of Precision

» Estimators are less variable across studies
— Standard errors are smaller

» Estimators typical of fewer hypotheses
— Confidence intervals are narrower

» Able to statistically reject false hypotheses
— Z statistic is higher under alternatives

135
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Std Errors: Key to Precision

Greater precision is achieved with smaller standard errors

Width of CI: 2x(crit val )x se(é)

Test statistic: Z = 9_?0 < N[g_?o ]

seld) seld)’

Power : Pwr(9)=Pr(z>z,_,| 6’):1—(1{21_a _7‘7)
seld

Typically : se(é): \Fn

(V related to average "statistical information™) 136
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Increasing Precision
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» Options
— Increase sample size

— Decrease V
* Alter statistical summary measure
+ Improve reliability of measurements
* Alter study design (e.g., cross-over)
« Alter eligibility (decrease heterogeneity)
« Alter clinical endpoint

— (Decrease confidence level)

137

Without Loss of Generality

It is sufficient to consider a one sample test of a one-sided
hypothesis
— Generalization to other probability models is immediate
» We will interpret our variability relative to average statistical info
— Generalization to two sided hypothesis tests is straightforward

Fixed sample one-sided tests
— Test of a one-sided alternative (6, > 0, )

» Upper Alternative: H,:0>0, (superiority)
* Null: Hy:0<06, (equivalence, inferiority)

— Decisions based on some test statistic T:
* RejectH, (forH,) <= T=xc

* RejectH, (forH,) <= T<c
138

Notation

Potential data : Y1, Yo, Ya, o Yy,
Probability model : Y, . 6.v)
Interim estimates : éNj = é(Yl,...,YNj)
Without sequential sampling :
Approximate distn : 631. = éNJ =~ N(H,V / Nj)
Indep increments : Cov(éNj ,HANM): VIN,
Interim test statistics : Z,=27, = 0‘;;30

139
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Ex: One Sample Mean

<
Il
ql\)
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Ex: One Sample Geometric Mean

...............................

6=u=log(GM) H=W
V =o? se(@): —

Ex: Difference of Indep Means

0?)i=12j=1...,n

indY; ~BL p;)i=12 j=1...n,

n=n+n,; r=n/n,

~ —

9=pl—p2 Hzﬁl_f)zzY_l._Yz.

of = pi(l_ pi)

V:(r+1)[af/r+a§] se(é)z\/gz 0—12+—

Ex: Difference of Paired Means

Y, ~(u,0?)i=12 j=1..,n
corr(Ylj,Yzj):p; corr(Yij,Ymk):Oif [

0= -, 02Y_1._Y2.

V =0/ +0)-2p0o,0, Se<é>=

144
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Ex: Mean of Clustered Data

9000000000000 00000000000000O0COCCTC

Y..~(,u o?)i=1...n j=1...,m
corr(Y”,Y,k) pif j=Kk; corr(Y Y., ) Oif i=m

ij

145

Ex: Independent Odds Ratios

indY; ~B(L p,)i=12 j=1...,n,

n=n+n,;, r=n/n,

V:(r+l)[o'12/r+(722] Se(é):\ﬁn: n;q "
1 MM

n2 p2q2
146

Ex: Hazard Ratios

ind censored time to event (T, ; )

i=12;, j=1...,n;n=n+n,; r=n/n,
6=1log(HR) 6= j from PH regression
(1+ r)/r+1) \F [@+r) (1/r+1)
Pr5 =1

147

Ex: Linear Regression

ind Y, | X,

0=p 6 = /?1 from LS regression

V= ki se(é)— il
Var(X) nvar(X )

- (ﬂ0+ﬂlXXi’O-v2|x ), i=1...

148
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Statistics to Address Variability
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+ At the end of the study we perform frequentist and/or Bayesian
data analysis to assess the credibility of clinical trial results

— Estimate of the treatment effect
» Single best estimate
* Precision of estimates

— Decision for or against hypotheses

* Binary decision
» Quantification of strength of evidence

149
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Criteria for Precision

» Standard error
» Width of confidence interval

+ Statistical power: Probability of rejecting the null hypothesis
— Select level of significance
« Standard: One-sided 0.025; two-sided 0.05
« Pivotal: One-sided 0.005; two-sided 0.01
— Select “design alternative”
» Minimal clinically important difference
— To detect versus declaring significant
— May consider what is feasible
« Minimal plausible difference
— Select desired power

» High power for a decision theoretic approach 150

Sample Size Determination

» Based on sampling plan, statistical analysis plan, and estimates
of variability, compute
— Sample size that discriminates hypotheses with desired power,

OR

— Hypothesis that is discriminated from null with desired power
when sample size is as specified, or

OR

— Power to detect the specific alternative when sample size is as
specified 151
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Standardized Setting

e

Widthof Cl:  2xz__,, X\F
n

- -6 0-0,
Test statistic: Z =+/n 0 < N(ﬁ =4/n 0 ,1}
\/V JV

06,
Power : Pwr(0)=1-®| z,_,,, —~/n 0
(©)=1-0{2,.., 0 5

Typically :

152
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Sample Size Computation: ClI
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+ Confidence interval discriminates between null, design alternative

Typically : 6 <N ('9, an

Widthof Cl:  2x Zla/ZX\/v =6-6,
n

Samp'@ size: n= (Zlfa/Z + Zl—a/2)2 \%
(‘91 _‘90)2

153
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Sample Size Computation: Power

Typically : 0~ N(H, an

Test statistic : Z=\m9_9°*N(5=\m€_9° j

W W
Power : Pwr(6’)=1—cI>[zl_a,2 -Jn 8\7\700 j =p

. 0-06,
Samplesize: z,=Vn-—=-2,,, = n=
A 0.6

154

(Zl—alz +Z, )ZV

Extension to Sequential Sampling

Standardized level a test (n =1) : 6,, detected with power S
Level of significance o when 6 = 6,

Design alternative 8 = 6,

Variability V within 1sampling unit

CAY

Required sampling units :
(‘91 _‘90)2

(Fixed sample test:6,, =2z, ,,, +2,)

155
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When Sample Size Constrained

» Often (usually?) logistical constraints impose a maximal sample
size
— Compute power to detect specified alternative

Find gsuchthat &, = \/VE(Hl -6,)

— Compute alternative detected with high power

0, =0, +5aﬁ\/%

156
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Special Case: Binomial Model
Issues in applying normal approximation in small samples
— Approximate normal distribution
— Mean-variance relationship
— Discreteness

In one sample case we can just use the exact binomial
distribution

— But we can use this case to explore the relative contributions of
the above three issues

In two sample settings it is generally important to use other
methods when sample sizes will be small

— Fishers exact test is too conservative = loss of power

— Recommend “unconditional exact tests” instead

157

lllustration: One Sample Binomial
Methods for construction of confidence intervals
Exact distribution
Exact distribution with half-p
Wald intervals
Continuity corrected Wald intervals
Score intervals
Continuity corrected Score intervals

Recall we construct Cl by inverting tests

Cl (V;a):{é :%< Pr{Y <, y|é)<1_%}

158

Exact P Values

Uses binomial distribution

.k kn
LowerP: Pr(ps|p0j:2[_J

159

Exact P Values: Half - P

Uses binomial distribution, but half the probability of being equal
to observed value

k-1(n i i 1(n K n—k
Lower P: Zi s (- p,) +5 ps (- p,)

= k

UpperP: Z m P (L~ po)"“+;(n] (- p, )

160
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Exact (Half P) Cl Coverage
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» Coverage as function of p for n=20

Coverage of 95% Cl: N =20

g
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Wald P Values

» Uses normal approximation with MLE in variance

Asymptotic Cl: Elevator Stats

+ Often we can just use best estimate of p in standard error for

confidence intervals and ignore the continuity correction
— np and n(1-p) must be large

-

Zl—a/2

+
e}l
o
S

100(1- )% Cl for p: p
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k
—— P
LowerP: Pr(ﬁsk| poj:(D yn—A
n plL-p)
K p
Mo
Upper P Pr(ﬁzk| pojzl—cl) Jn—_
n plL-p)
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Wald Cl Coverage
» Coverage as function of p for n=20
Coverage of 95% CI: N =20
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Continuity Corrected Wald P Values
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* Uses normal approximation with MLE in variance, but adjusts for

discreteness

April 8, 2013

Continuity Corrected Wald Cl Coverage

» Coverage as function of p for n=20

Coverage of 95% CI: N = 20

—t+_ =P
Lower P: Pr(ﬁ k+05 Oj:db Jn_2n
n pL-p)
k 1 0
— n 0
Upper P Pr(ﬁzk 0'5| ) 1-@|JnN_2n__
n p(L-p)
165
Score P Values
» Uses normal approximation with hypothesized variance
K P
T Mo
LowerP: Pr(ﬁsk| p0j=<1> Jn——A
n po(l_ po)
K p
T Mo
Upper P Pr(ﬁzk| poj—l ®| v/n—L
n po(l_ po)
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Continuity Corrected Score P Values
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» Uses normal approximation with hypothesized variance, but

adjusts for discreteness

—Po
Lower P: Pr(ﬁ k+05 j f”
n p( Po)
k 1 b
— 0
Upper P Pr(ﬁzko'5|p) 1- d)f%
n Po1-p,)
169
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Asymptotic Cl: Best Approach

* We do best by considering mean-variance relationship and

continuity correction
— Requires quadratic formula or iterative search
— (Quadratic formula can be easily implemented in Excel, etc.)

100(1- )% Cl for p: (Po, By)

A A i ﬁu 1- ﬁu
Pu=P+ on + Zl—a/Z\/in o

Continuity Corrected Cl Coverage

» Coverage as function of p for n=20

Coverage of 95% Cl: N =20

g
g - ‘T‘Sﬂﬂ ,
] 2 : idlili8 ]
£ ° '|'Jlﬁl'1|;]*ﬁ’l sl | m"lrflp
s ll“lm' Hl |""°|Ifl
§ - i l%lj '-l'ql Ilfi
o D
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Continuity Corrected 95% CI Coverage

» Coverage as function of n

Min, Max Coverage of 95% Clby N

8 - @ Min Max
e, " o o eSeore

Min, Max Coverage Probability

o 50 100 150 200 250 200
172

Sample Size (N)
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Continuity Corrected 99% CI Coverage
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Coverage as function of n

Min, Max Coverage of 99% Clby N

Min Max
o= -0r ESeoe
f - Exnet

Min, Max Coverage Probability

0 50 100 150 200 250 300
173

Sample Size (M)

Two Sample Binomial

With two sample binomial, we are interested in 6 = p, — p,

There is a nuisance parameter p, that affects the distribution of
the statistic

Classical choices include

— Fishers exact test

— Chi square test (score test)
Wald test

Likelihood ratio test

Better choice in small samples: unconditional exact tests

174

Modifications: Unconditional Exact Test

Use the classical statistic

Don’t presume the classical distribution
— Don’'t assume chi squared statistic has chi square distribution
— Don’'t assume Fisher’s Exact P value has uniform distribution

Consider all possible values of p common to both groups, and
use exact distribution
— Then take worst case

175

Regions of Correct Size for Asymptotics

Valid Use of the Unadjusted Chi Square

Valid Use of the Unadjusted LR

Nominal Typs | Emor
Nominal Type | Emor

a0 a1
L L

008
L
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Power
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Lecture 2

General Comments
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It is generally immaterial whether the Fisher's exact test P value
or the chi square statistic or likelihood ratio statistic is used as the
basis for the exact test

In any case, the critical value is dependent upon the sample sizes

Using this approach, substantial improvement in power is
obtained in low sample sizes

| strongly recommend its use when confronted with small samples
in real life
181
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Increasing Precision: Options

Increase sample size

Decrease V
— Statistically
« Alter statistical summary measure
« Adjust for prognostic covariates
« Alter study design (e.g., cross-over)
— Scientifically
» Improve reliability of measurements
« Alter eligibility (decrease heterogeneity)
« Alter clinical endpoint

(Decrease confidence level) 182

Summary Measures: Relative Efficiency

Example: Dichotomization of exponential time to event

iidY, ~E(u),i=1...,n

183
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Summary Measures: Relative Efficiency

Example: Dichotomization of exponential time to event

By CLT: p~N(p eCUt’p(l_p)]
n
Using 6 method: @ =g(p)= .
log p
. C
9'(p)=- >
plog® p
A~ 2(1 _ 41 _a-Clu
Q*Z_LA.:.N 9,C (1 4p):,u (12 ?/ )
log p nplog* p nce '

184
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Summary Measures: Relative Efficiency
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Example: Dichotomization of exponential time to event

Relative Efficiency :

/U4(1— e—c/,u)
RE(,67)= nc’e”

e

(el u)e

185

Summary Measures: Relative Efficiency

Minimum relative efficiency: 1.544 at c=1.594 (p= 0.203)

Relative Efficiency of MLE vs Dichotomized Exponential

Relative Efficiency

Dichotomization Threshold (¢ / mu)

186

Dichotomization of Measurements

(AN R NN NN NN NN ENNENNENRNNENRENNENNENNENNNNN]
In general, dichotomization (or categorization) of measurements
will result in a loss of precision when assessed in a parametric
model

— The relative efficiency loss will depend upon the exact parametric
model

When viewed in a distribution-free manner, however, failure to
dichotomize the data may mean that inference relates to the
wrong measure of treatment effect
— Quite often, we dichotomize data to reflect scientific importance
» E.g., attaining normal SBP or blood glucose
» E.g., surviving at least 28 days in critical care

187

Controlling Variation

In a two sample comparison of means, we might control some
variable in order to decrease the within group variability

— Restrict population sampled
— Standardize ancillary treatments
— Standardize measurement procedure

188
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Adjusting for Covariates

* When comparing means using stratified analyses or linear
regression, adjustment for precision variables decreases the
within group standard deviation

— Var (Y | X)vs Var (Y | X, W)

189

Ex: Linear Regression

ind
Unadi:  Y,|X, ~ (B+BxX, 0% ) i=1...n

ind
Adis Y X W, ~ (7 + 7 x X, 7, x W, 020 ) =100

0=p=n9 if balanced, stratified

0= E(/}1 | X ): Eu[E(7 | X,W)] if complete randomization

~ O-VZ\X ~\ G?\x,w
A () o)

Ol =0 —722\/ar(W | X)

r, =0 if balanced randomization, else r%, ~0 190

Precision with Proportions

* When analyzing proportions (means), the mean variance
relationship is important
— Precision is greatest when proportion is close to 0 or 1
— Greater homogeneity of groups makes results more deterministic
* (At least, | always hope for this)
— Hence, we should get lower within-group variance upon adjusting
for prognostic variables

191

Ex: Diff of Indep Proportions

ind Y, ~BL p)i=12j=1...,n
n=n+n,; r=n/n,

~

gzpl_pz ezﬁl_ﬁZZY_lo_Y_Zo
O_iz = pi(l_ pi)
R 2 2
V=(r+1)o? /1 +02] se(@)z\/zz 9 ,%
n \n n,

Statistical Design of Clinical Trials, SPR 2013
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Precision with Odds
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* When analyzing odds (a nonlinear function of the mean),
adjusting for a precision variable results in more extreme
estimates

— odds=p/(1-p)
— odds using average of stratum specific p is not the average of
stratum specific odds

* Generally, little “precision” is gained due to the mean-variance
relationship

— Unless the precision variable is highly prognostic

193
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Precision with Hazards

* When analyzing hazards, adjusting for a precision variable results
in more extreme estimates

» The standard error tends to still be related to the number of
observed events

— Higher hazard ratio with same standard error =» greater precision

194

Adjustment for Covariates

» We “adjust” for other covariates

— Define groups according to
* Predictor of interest, and
+ Other covariates

— Compare the distribution of response across groups which
« differ with respect to the Predictor of Interest, but
« are the same with respect to the other covariates

— “holding other variables constant”

195
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Unadjusted vs Adjusted Models

« Adjustment for covariates changes the scientific question
— Unadjusted models
» Slope compares parameters across groups differing by 1 unit in
the modeled predictor
— Groups may also differ with respect to other variables
— Adjusted models
+ Slope compares parameters across groups differing by 1 unit in
the modeled predictor but similar with respect to other modeled
covariates

196
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Interpretation of Slopes Comparing models
. Diference in terprtation ofsopes. Unadjusted Q|0 X, |~ f+ B x X,
Unadjusted Model :  g[@ |X, |= 5, + B, x X, Adjusted  g[a]X,, W, =7, +7,x X, +7, xW,
— B, = Compares 0 for groups differing by 1 unit in X
« (The distribution of W might differ across groups being compared) Science: When is 7= ﬂl?
Adjusted Model : g[6?|Xi,Wi]=;/0+;/l><Xi + 7, xW, Whenis 7i=B

— vy, = Compares 6 for groups differing by 1 unit in X, but agreeing in their
values of W

Statistics: When is )7
When is sé(7,) = sé(ﬁ' )’

General Results Linear Regression
» These questions can not be answered precisely in the general
case

Difference in interpretation of slopes
— However, in linear regression we can derive exact results

Unadjusted Model :  EJY, |Xi]: Bo+ PLx X,
— These will serve as a basis for later examination of
* Logistic regression

+ Poisson regression

— B4 =Diffin mean Y for groups differing by 1 unit in X
* Proportional hazards regression

* (The distribution of W might differ across groups being compared)

Adjusted Model : E[Y; [X;,W; ]= 7o + 71 X; + 7, xW,

— v, = Diff in mean Y for groups differing by 1 unit in X, but agreeing in
their values of W

199

200
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Relationships: True Slopes
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* The slope of the unadjusted model will tend to be

Jor
Bi=1+ P —L7,
o

X

* Hence, true adjusted and unadjusted slopes for X are estimating the

same quantity only if
— pxw =0 (Xand W are truly uncorrelated), OR

-V, = 0 (no association between W and Y after adjusting for X)

201
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Relationships: Estimated Slopes

» The estimated slope of the unadjusted model will be

~ A ~ Sw
=y, 1+p,r
& 7/1[ b {Sx (rYX ~ Fow Fxw )iD

* Hence, estimated adjusted and unadjusted slopes for X are equal only if

— Iy =0 (Xand W are uncorrelated in the sample, which can be
arranged by experimental design), OR

7')2 = (Qwhich cannot be predetermined, because Y is random)

- sy =0 (Wis controlled at a single value in which case ry,, = 0)

202

Relationships: True SE

Unadjusted Model [se(lé’l)]2 :%(XX))

var(Y [X,w)
nvar (X J1-rZ, )

Adjusted Model [se(7,)]* =

Var (Y | X )=y2Var(W | X )+Var(Y | X,W)

203
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Relationships: True SE

Unadjusted Model [se(ﬂ )] \i:/ra: ‘X

()

_ . Var(Y [X,w)
Adjusted Model =

justea viode [56(71)] nVar( )l—rfw

X
Var(Y | X)=y2Var(W | X )+Var(Y | X,W)

Thus, se(ﬁ’l): se(7, ) if
Il =0
AND
7,=0 OR Var(W|X)=0

204

51



Lecture 2

April 8, 2013

Relationships: Estimated SE

...............................

(3 ) - SSE(Y [X )/(n-2)
[ (1)] - (n—l)si
SSE(Y [X,W)/(n-3)

Unadjusted Model

Adjusted Model [se(7,)]" = .
X XW

SSE(Y | X)= (%, = 3, - Bix X, f
SSE(Y | X\ W) =3 (Y, =7 = 7% X; = 7, xW, )

205

Relationships: Estimated SE

Thus, sé(ﬁl)z sé(y,) if
ryw =0
AND
SSE(Y |X )/(n-2)=SSE(Y [X,W )/(n-3)

206

Residual Squared Error

SSE(Y | X):Z(Yi_:éo_l&xxi)z
SSE(Y | X, W) =3 (Y, =7 = 7% X; = 7, xW, )

When calculated on the same data :
SSE(Y | X )>SSE(Y | X,W)

207

Relationships: Estimated SE

SSE(Y |X)= 3% - 4y - Aix X, f
SSE(Y | X, W)= (Y, = 75 = 7ux X, =7, xW, }

Now 3, = 7, if

7, =0, inwhich case SSE(Y | X )= SSE(Y | X,W)
OR

rw =0, and SSE(Y | X)>SSE(Y | X,W)if 7, #0

208
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Special Cases
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» Behavior of unadjusted and adjusted models according to
whether

— Xand W are uncorrelated (no association in means)
— Wis associated with Y after adjustment for X

rew =0 fw 20
7, #0 Precision Confoundirg
7, =0 lrrelevant Var Inflation

209
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Simulations

* Unadjusted and adjusted estimates of treatment effect as a
function of

— Effect of a third covariate on mean outcome

— Association between third covariate and treatment
« Difference in mean covariate
« Difference in median covariate

Sampling Eﬁ/vi|xi]=ao+alxxi
Unadjusted : g[<9|Xi]:ﬁ0+,b’1><Xi
Adjusted : g[9|Xi,Wi]:;/0+;/l><Xi+;/2><Wi

210

Linear Regression

» Simulation results

Truth Estimates
AMdn a; nw V. Vs By Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.28) 0.0(0.19)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.28) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 1.0 1.0(0.28) 1.0(0.20)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.28) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.3(0.29) 0.0(0.21)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.20) 0.0(0.22)

211
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Linear Regression

« Simulation results

Truth Estimates
AMdn a; g Vo Vi B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.28) 0.0 (0.19)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.28) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 1.0 1.0(0.28) 1.0(0.20)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.28) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.3(0.29) 0.0(0.21)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.20) 0.0(0.22)

212
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Linear Regression
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» Simulation results

Truth Estimates
AMdn a; g Vo Vs By Y1
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 00 000 1.0 00  0.0(0.28) 0.0(0.19)
Precision -0.3 0.0 000 1.0 0.0  0.0(0.28) 0.0(0.20)
Precision 0.0 00 000 1.0 1.0  1.0(0.28) 1.0(0.20)
Confound 03 03 015 1.0 00  03(0.28) 0.0(0.21)
Confound 00 0.3 015 1.0 00  03(0.29) 0.0(0.21)
Varinflan 0.0 1.0 045 0.0 00  0.0(0.20) 0.0(0.22)
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Linear Regression

» Simulation results

Truth Estimates
AMdn a; g Vo Vs B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0(0.20)
Precision 0.0 0.0 000 1.0 00  0.0(0.28) 0.0(0.19)
Precision -0.3 0.0 000 1.0 0.0  0.0(0.28) 0.0(0.20)
Precision 0.0 0.0 000 1.0 1.0 1.0 (0.28) 1.0 (0.20)
Confound 0.3 03 015 1.0 00  0.3(0.28) 0.0 (0.21)
Confound 0.0 03 015 1.0 0.0  03(0.29) 0.0(0.21)
VarInflatn 0.0 1.0 045 0.0 00  0.0(0.20) 0.0(0.22)
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Linear Regression

» Simulation results

Truth Estimates
AMdn a; nw V. Vs By Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.28) 0.0(0.19)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.28) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 1.0 1.0(0.28) 1.0(0.20)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.28) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.3(0.29) 0.0(0.21)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.20) 0.0(0.22)
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Linear Regression

« Simulation results

Statistical Design of Clinical Trials, SPR 2013

Truth Estimates
AMdn a; g Vo Vi B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.28) 0.0 (0.19)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.28) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 1.0 1.0(0.28) 1.0(0.20)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.28) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.3(0.29) 0.0(0.21)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.20) 0.0(0.22)
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Logistic Regression
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» Simulation results

Truth Estimates
AMdn a; g Vo Vs By Y1
Irrelevant 0.0 0.0 000 0.0 0.0  0.0(042) 0.0(0.42)
Precision 0.0 0.0 000 1.0 00  0.0(040) 0.0(0.42)
Precision -0.3 0.0 000 1.0 0.0  0.0(0.42) 0.0(0.43)
Precision 0.0 0.0 0.00 1.0 1.0 0.8 (0.43) 1.0(0.49)
Confound 03 03 015 1.0 0.0  03(043) 0.0(0.48)
Confound 00 0.3 015 1.0 00  0.2(0.41) 0.0(0.47)
Varinflatn 0.0 1.0 045 0.0 00  0.0(0.41) 0.0 (0.47)
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Logistic Regression

» Simulation results

Truth Estimates
AMdn a; g Vo Vs B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0  0.0(042) 0.0(0.42)
Precision 0.0 0.0 000 1.0 0.0  0.0(0.40) 0.0(0.42)
Precision -0.3 0.0 000 1.0 0.0  0.0(042) 0.0 (0.43)
Precision 0.0 00 000 1.0 1.0  0.8(0.43) 1.0(0.49)
Confound 0.3 03 015 1.0 00  0.3(0.43) 0.0 (0.48)
Confound 0.0 03 015 1.0 0.0  02(0.41) 0.0(0.47)
VarInflatn 0.0 1.0 045 0.0 00  0.0(0.41) 0.0 (0.47)
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Logistic Regression

» Simulation results

Truth Estimates
AMdn a; ey V. Vs By Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0(0.42) 0.0(0.42)
Precision 0.0 0.0 0.00 1.0 0.0 0.0 (0.40) 0.0(0.42)
Precision -0.3 0.0 0.00 1.0 0.0 0.0 (0.42) 0.0 (0.43)
Precision 0.0 0.0 0.00 1.0 1.0 0.8(0.43) 1.0(0.49)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.43) 0.0(0.48)
Confound 0.0 0.3 0.15 1.0 0.0 0.2(0.41) 0.0(0.47)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.41) 0.0(0.47)
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Logistic Regression

« Simulation results

Statistical Design of Clinical Trials, SPR 2013

Truth Estimates
AMdn a; g Vo Vi B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.42) 0.0(0.42)
Precision 0.0 0.0 0.00 1.0 0.0 0.0 (0.40) 0.0 (0.42)
Precision -0.3 0.0 0.00 1.0 0.0 0.0 (0.42) 0.0(0.43)
Precision 0.0 0.0 0.00 1.0 1.0 0.8(0.43) 1.0(0.49)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.43) 0.0(0.48)
Confound 0.0 0.3 0.15 1.0 0.0 0.2(0.41) 0.0(0.47)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.41) 0.0(0.47)
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Logistic Regression
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» Simulation results

Truth Estimates
AMdn a; g Vo Vs By Y1
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0(0.42) 0.0(0.42)
Precision 0.0 0.0 0.00 1.0 0.0 0.0 (0.40) 0.0 (0.42)
Precision -0.3 0.0 0.00 1.0 0.0 0.0 (0.42) 0.0 (0.43)
Precision 0.0 0.0 0.00 1.0 1.0 0.8(0.43) 1.0(0.49)
Confound 0.3 0.3 0.15 1.0 0.0 0.3(0.43) 0.0(0.48)
Confound 0.0 0.3 0.15 1.0 0.0 0.2(0.41) 0.0(0.47)

Varinflan 0.0 1.0 045 00 00  0.0(0.41) 0.0(0.47)
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Proportional Hazards Regression

» Simulation results

Truth Estimates
AMdn a; nw V. Vs By Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.21) 0.0(0.22)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.21) 0.0(0.21)
Precision 0.0 0.0 0.00 1.0 1.0 0.7(0.21) 1.0(0.22)
Confound 0.3 0.3 0.15 1.0 0.0 0.2(0.21) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.1(0.20) 0.0(0.22)

VarInflan 0.0 1.0 045 00 00  0.0(0.20) 0.0(0.23)
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Proportional Hazards Regression

» Simulation results

Truth Estimates
AMdn a; g Vo Vs B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0(0.20)
Precision 0.0 0.0 000 1.0 00  00(0.21) 0.0(0.22)
Precision -0.3 0.0 000 1.0 0.0  00(0.21) 0.0(0.21)
Precision 0.0 00 000 1.0 1.0  07(0.21) 1.0(0.22)
Confound 0.3 03 015 1.0 00  0.2(0.21) 0.0(0.21)
Confound 0.0 03 015 1.0 0.0  0.1(0.20) 0.0(0.22)

VarInflatn 0.0 1.0 045 00 00  0.0(0.20) 0.0 (0.23)
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Proportional Hazards Regression

« Simulation results

Truth Estimates
AMdn a; g Vo Vi B, Vi
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.21) 0.0(0.22)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.21) 0.0(0.21)
Precision 0.0 0.0 0.00 1.0 1.0 0.7(0.21) 1.0(0.22)
Confound 0.3 0.3 0.15 1.0 0.0 0.2(0.21) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.1(0.20) 0.0(0.22)

VarInflatn 0.0 1.0 045 0.0 0.0  0.0(0.20) 0.0 (0.23)
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Proportional Hazards Regression
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» Simulation results

Truth Estimates
AMdn a; g Vo Vs By Y1
Irrelevant 0.0 0.0 0.00 0.0 0.0 0.0 (0.20) 0.0 (0.20)
Precision 0.0 0.0 0.00 1.0 0.0 0.0(0.21) 0.0(0.22)
Precision -0.3 0.0 0.00 1.0 0.0 0.0(0.21) 0.0(0.21)
Precision 0.0 0.0 000 1.0 1.0  07(021) 1.0(0.22)
Confound 0.3 0.3 0.15 1.0 0.0 0.2(0.21) 0.0(0.21)
Confound 0.0 0.3 0.15 1.0 0.0 0.1(0.20) 0.0(0.22)
Var Inflatn 0.0 1.0 045 0.0 0.0 0.0 (0.20) 0.0(0.23)
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Precision: Linear Regression

E.g., X, Windependent in population (or completely randomized
experiment) AND W associated with Y independent of X

Pxw =0 7,#0

True Value Estimates
Slopes Bi=1 B~ 7,
Std Errs se(,@’l)> se(7,) sé([fl)> sé(7,)

226

Precision: Logistic Regression

+ Adjusting for a precision variable
+ Deattenuates slope away from the null
» Standard errors reflect mean-variance relationship
— Substantially increased power only in extreme cases
» (OR > 5 for equal samples sizes of binary W)

True Value Estimates
Slopes g, >0: B<n ,31 <h
ﬂl<0 ﬁ1>7/1 ﬁ1<?1
Std Errs Se(ﬁ1)< Se(?l) Sé(ﬁl)< Sé(?l) 227

Statistical Design of Clinical Trials, SPR 2013

Precision: Poisson Regression

+ Adjusting for a precision variable
* No effect on the slope (similar to linear regression)
— log ratios are linear in log means
» Standard errors reflect mean-variance relationship
— Virtually no effect on power

True Value Estimates
Slopes Bi=n B~ 7,
Std Errs Se(ﬂl)z se(7,) Sé(ﬂl)z s&(7,)
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Precision: PH Regression
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» Adjusting for a precision variable
+ Deattenuates slope away from the null
» Standard errors stay fairly constant
— (Complicated result of binomial mean-variance)

True Value Estimates
Slopes f,>0: Bi<n ,31 <
£, <0: B> ﬁA1>7;1
Std Errs se(ﬁl)z se(7,) Sé(,él)z s&(7,) 22
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Lin Reg: Stratified Randomization

+ Stratified (orthogonal) randomization in a designed experiment

Iy =0 7, #0

True Value Estimates
Slopes B = Bi=n

71
Std Errs se(ﬁl)z se(7,) sé(ﬁl)> sé(7,)
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Special Case: Baseline Adjustment

» Options
— Final only (throw away baseline)
V =202
— Change (final — baseline)
V=402 (1-p)
— ANCOVA (change or final adj for baseline
V =202 (1-p?)

231
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Ex: ANCOVA (Baseline Adjustment)

ind Yq | X; ~( o T XX +,81XYoiaO'v2\x,yo),
i=1...,n p:corr(YOi,Yﬁ)

0=p 6 = [5’1 from LS regression
2 (1_ 42 ~ 2 (1_ 42

VAL el (1 '0) se(H): oull=p)
Var(X) nVar(X )
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Comparison of Study Designs
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Single Arm: Mean; absolute reference N= 25
Single Arm: Mean; historical data 50

* Two Arms : Diff in Means 100
» Two Arms : Diff in Mean Change (r = 0.3) 140
* Two Arms : Diff in Mean Change (r = 0.8) 40

+ Two Arms : ANCOVA (r = 0.3) 81
+ Two Arms : ANCOVA (r = 0.8) 36
» Cross-over: Diff in Means (r = 0.3) 70
» Cross-over: Diff in Means (r = 0.8) 20

233

General Comments: Alternative

What alternative to use?
— Minimal clinically important difference (MCID)
* To detect? (use in sample size formula)
» To declare significant? (look at critical value)

— Subterfuge: 80% or 90%

234

General Comments: Level

* What level of significance?
— “Standard”: one-sided 0.025, two-sided 0.05
— “Pivotal”: one-sided 0.005?
» Do we want to be extremely confident of an effect, or confident of
an extreme effect

235

General Comments: Power

* What power?
— Science: 97.5%
* Unless MCID for significance> ~50%
— Subterfuge: 80% or 90%

236
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Role of Secondary Analyses
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» We choose a primary outcome to avoid multiple comparison
problems
— That primary outcome may be a composite of several clinical
outcomes, but there will only be one ClI, test

» We select a few secondary outcomes to provide supporting
evidence or confirmation of mechanisms
— Those secondary outcomes may be
+ alternative clinical measures and/or
« different summary measures of the primary clinical endpoint

237

Secondary Analysis Models

Selection of statistical models for secondary analyses should
generally adhere to same principles as for primary outcome,
including intent to treat

Some exceptions:

— Exploratory analyses based on dose actually taken may be
undertaken to generate hypotheses about dose response

— Exploratory cause specific time to event analyses may be used to
investigate hypothesized mechanisms

238

Subgroups
» Testing for effects in K subgroups
— Does the treatment work in each subgroup?
— Bonferroni correction: Testata / K
* No subgroups:
» Two subgroups:

N =100
N =230

» Testing for interactions across subgroups
— Does the treatment work differently in subgroups?
* Two subgroups: N =400

239

Additional Constraints

Safety analyses
— Often there is a minimal number needed to treat in order to have
enough data to rule out unacceptably high rates of extremely
serious adverse events
* “3 over n rule” as confidence bound when no such events
observed

Subgroup analyses
— May need sufficient data to examine effects in important
subgroups

240
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