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Emerson, Winter 2015
Homework #6
March 4, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Wednesday, March 11, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 

On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)
Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
1. Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
2. Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.

Problems 1-3 of the homework relate to the dataset regarding MRI measurements of cerebral atrophy in elderly Americans (mri.doc and mri.txt). In this homework we will focus primarily on associations between mortality and serum LDL as possibly modified by race. 
1. Suppose we are interested in exploring whether any association between time to death and serum LDL is adequately modeled by a relationship in which the log hazard function is linear in LDL. I ask you to compare several different alternative models that allow nonlinearity. In part f, I ask you to plot fitted HR estimates from each of these models on the same axis. In order to have comparability across models, we need to use the same reference group:

· In all parts of this problem where you need to divide the LDL values into intervals, use 70, 100, 130, and 160 mg/dL as breakpoints for the LDL measurements. Stata commands that might be used are:
egen ldlctg= cut(ldl), at(0,70,100,130,160,400)

mkspline sldlA 70 sldlB 100 sldlC 130 sldlD 160 sldlE = ldl
· In all parts of this problem where you model LDL continuously, we will use 1 mg/dL as the reference group (this will accommodate the log transformation). Thus you might create variables in Stata:
g logldl= log(ldl)

g cldl= ldl – 1

g cldlsqr= cldl^2

g cldlcub= cldl^3
a. Fit a regression model in which you test for a linear relationship using a step function as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

I fit a proportional hazards regression model with time to death as the response variable and dummy variables for 0-70, 70-100, 100-130, 130-160, 160-400 mg/dL LDL as well as a linear term for LDL as the predictors of interest.  In this model the 10 missing values were ignored.  To test that there was no departure from linearity I tested the dummy variable terms with a Wald test.  The two-sided p value of 0.65 shows that there is no evidence for a significant departure from linearity.

b. Fit a regression model in which you test for a linear relationship using a quadratic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

I fit a proportional hazards model with time to death as the response and LDL and LDL^2 as the predictors of interest.  In this model the 10 missing values were ignored.  To test that there was no departure from linearity the p value for LDL^2 from the model can be used.  The two-sided p value of 0.089 shows that there is no evidence for a significant departure from linearity.

c. Fit a regression model in which you test for a linear relationship using a cubic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

I fit a proportional hazards model with time to death as the response and LDL and LDL^2 and LDL^3 as the predictors of interest.  In this model the 10 missing values were ignored.  To test that there was no departure from linearity I tested the LDL^2 and LDL^3 terms with a Wald test.  The two-sided p value of 0.17 shows that there is no evidence for a significant departure from linearity.

d. Fit a regression model in which you test for a linear relationship using linear splines as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

I fit a proportional hazards model with time to death as the response and linear splines with knots at 70, 100, 130, 160 mg/dL LDL as the predictors of interest.  In this model the 10 missing values were ignored.  To test that there was no departure from linearity I tested that all of the linear spline terms were equal with a Wald test.  The two-sided p value of 0.39 shows that there is no evidence for a significant departure from linearity.

e. Fit a regression model in which you test for a linear relationship using a logarithmic transformation as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

I fit a proportional hazards model with time to death as the response and log(LDL) and LDL as the predictors of interest.  In this model the 10 missing values were ignored.  To test that there was no departure from linearity the p value for log(LDL) from the model can be used.  The two-sided p value of 0.078 shows that there is no evidence for a significant departure from linearity.
f. On the same set of axes, plot the fitted values from each of the above models, as well as a model that includes only the (centered) serum LDL values. Comment on the similarity and/or differences among these models. How might these results guide your choice of a particular model when investigating whether associations are not well described by a linear relationship?
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The quadratic and cubic models are very similar over most of the range of LDL, until really high LDL.  Normally this would mean that we would choose the quadratic model over the cubic model since we want to only put in the number of parameters necessary to get the flexibility we need.  However, the quadratic model does curve up at the end, which none of the other models do.  This clearly does not accurately represent the data, which suggests that there is still a lowering in hazard ratio with an increase in LDL at high levels of LDL.  The cubic model does capture this; however it is very similar to the logistic model.  If we were just comparing those two then we would want to choose the logistic model since it has less parameters and gives us the flexibility we need.  The linear spline model is similar to the logistic and cubic models and models the data most directly since it is considering sections of the whole range of LDL.  Models using linear splines can have issues with not having enough data between two knots.  This model has enough data for all sections except for 0-70 mg/dL LDL.  There are only 7 or so measurements at this low end and therefore the fit is not highly accurate.  The dummy variable model, like the linear splines model, allows for sectioning of the data and creation of a line within each section.  With the dummy variables the lines do not need to connect.  The dummy variable model is not appealing since it predicts decreasing hazard ratio within each group then a jump up at the beginning of the next group.  This does not make any scientific sense.

 If we are looking to detect a nonlinear relationship I feel like linear splines, with a reasonable number of knots, is a good choice.  It mirrors the actual data most closely and is not dependent on a certain polynomial or transform of the data.  It also usually makes more scientific sense than the dummy variables, whose lines do not need to connect.

2. Consider again a model exploring the associations between time to death and serum LDL when using linear splines. 

a. Explain the interpretation of the regression parameters in such a model.

They are the slopes of the lines between the knots.  That is to say, the change in log hazard ratio per 1 unit change in LDL between the two knots.

Here is the interpretation of the linear splines variables from my model:

LDL min: The change in log hazard ratio per 1 unit change in LDL between LDL = 0mg/dL and LDL = 70mg/dL

LDL 70: The change in log hazard ratio per 1 unit change in LDL between LDL = 70 mg/dL and LDL = 100mg/dL

LDL 100: The change in log hazard ratio per 1 unit change in LDL between LDL = 100 mg/dL and LDL = 130mg/dL

LDL 130: The change in log hazard ratio per 1 unit change in LDL between LDL = 130 mg/dL and LDL = 160mg/dL

LDL 160: The change in log hazard ratio per 1 unit change in LDL with LDL greater than 16070mg/dL

b. Is there evidence that the association between time to death and serum LDL is truly U-shaped? Explain your evidence.

No.  Visually, it seems to decrease with increasing LDL in a relatively linear fashion.  Also, the quadratic model from earlier was not significant while the linear model was (two-sided p = 0.0055).  In order to statistically test this we must test whether the slope for the first linear splines parameter (LDL min) is either negative or positive and that the slope for the last linear splines parameter (LDL 160) is the opposite (positive/neg).  Both of the p values for these sections of the linear splines model would have to be significant.

	Model
	Parameter
	Slope
	P value

	4 Knot Model
	LDL min
	-0.0220
	0.15

	
	LDL 160
	-0.00613
	0.63

	3 Knot Model*
	LDL min
	-0.0256
	0.0042

	
	LDL 160
	-0.00754
	0.45


*Knots at 90, 120, 150 mg/dL LDL

As can be seen from the above table, the p value for LDL 160 is not significant in either the 4 knot model that we designed previously or a 3 knot model with the knots as noted above.  Therefore there is no evidence for a U-shaped association between time to death and serum LDL.

3. Suppose we are interested in exploring the associations between time to death and serum LDL as possibly modified by race. In this problem you do not need to provide formal description of the methods or inference, though I do ask at times for specific inferential quantities.

a. Fit a model of time to death regressed on a log transformation of serum LDL, race, and their interaction. Provide an explicit interpretation of each parameter in your model (be sure to include the actual numeric value in your interpretation, but you do not have to provide CI or p values for this part).
lldl = Log(ldl)

dummy(race) = Dummy variable of race [White = reference, Black = 2, Asian = 3, other = 4]

ldRace = Log(ldl)*dummy(race) = interaction of log ldl and race

In this model the 10 missing values were ignored.

The model coefficient for the variable lldl is the change in the log hazard ratio in White people differing in log ldl by 1 unit, and is equal to -0.774.

The model coefficient for the variable dummy(race)2 is the change in the log hazard ratio between Black people and White people with an LDL of 0, and is equal to -1.87.

The model coefficient for the variable dummy(race)3 is the change in the log hazard ratio between Asian people and White people with an LDL of 0, and is equal to 5.72.

The model coefficient for the variable dummy(race)4 is the change in the log hazard ratio between people who put Other as their race and White people with an LDL of 0, and is equal to 19.6.

The model coefficient for the variable ldRace2 is the difference in the difference in log hazard ratio per 1 unit change in log LDL for Black people compared to White people, and is equal to 0.440.

The model coefficient for the variable ldRace3 is the difference in the difference in log hazard ratio per 1 unit change in log LDL for Asian people compared to White people, and is equal to -1.17.

The model coefficient for the variable ldRace4 is the difference in the difference in log hazard ratio per 1 unit change in log LDL for people who put Other as their race compared to White people, and is equal to -4.02.
b. Use the regression analysis in part a to perform a statistical test of the hypothesis that race does not modify the association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.

In order to test that race does not modify the association between time to death and serum LDL the interaction terms (ldRace2, ldRace3, ldRace4) from the model in part a can be tested with a Wald test.  The two-sided p value is 0.16, indicating that there is no evidence for significant modification of the association between time to death and serum LDL.

c. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.

In order to test that there is no association between time to death and serum LDL the interaction terms (ldRace2, ldRace3, ldRace4) and log LDL (lldl) term from the model in part a can be tested with a Wald test.  The two-sided p value is 0.0017, indicating that there is a statistically significant association between time to death and serum LDL.

d. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and race. Make clear which parameters you test and provide a two-sided p value.

In order to test that there is no association between time to death and race the interaction terms (ldRace2, ldRace3, ldRace4) and race (dumy(race)2, dummy(race)3, dummy(race)4) terms from the model in part a can be tested with a Wald test.  The two-sided p value is 0.13, indicating that there is no evidence for a statistically significant association between time to death and race.

e. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no difference in the distribution of time to death between whites and blacks. Make clear which parameters you test and provide a two-sided p value. 

In order to test that there is no difference in the distribution of time to death between whites and blacks the p value for the interaction term ldRace2 from the model in part a can be consulted.  The two-sided p value is 0.59, indicating that there is no evidence for a statistically significant difference in the distribution of time to death between whites and blacks.
Problems 4 of the homework relates to the university salary dataset. 
4. We are interested in raises given to faculty hired in recent years. For this problem, restrict attention to faculty hired in 1990 or later and who started at the university within one year of the year in which they received their highest degree. In order to (at least in part) examine the patterns of raises given to faculty, we will model salaries by sex, calendar year, and an interaction between sex and calendar year. Use such a model to answer the following questions.

a. Is there evidence of sex discrimination in the mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.

I fit a linear regression model with salary as the response and sex (0 = female, 1 = male), year, and sex*year (the sex-year interaction) as the predictors of interest.  Only faculty hired in 1990 or later and those who started at the university within one year from getting their highest degree were included in the model.  This was done to reduce the effect of historical discrimination and differences in experience.  There was no missing data.  In order to test that there is no difference in mean salary between men and women in recent years I performed a Wald test on sex and the sex-year interaction.  The two-sided p value is >0.0001, indicating that there is statistically significant difference in mean salary between men and women in recent years.

b. Is there evidence of sex discrimination in the geometric mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.

I fit a linear regression model with log salary as the response and sex (0 = female, 1 = male), year, and sex*year (the sex-year interaction) as the predictors of interest.  Only faculty hired in 1990 or later and those who started at the university within one year from getting their highest degree were included in the model.  This was done to reduce the effect of historical discrimination and differences in experience.  There was no missing data.  In order to test that there is no difference in geometric mean salary between men and women in recent years I performed a Wald test on sex and the sex-year interaction.  The two-sided p value is >0.0001, indicating that there is statistically significant difference in geometric mean salary between men and women in recent years.

c. What are the relative merits of the two models used in parts a and b?
A priori we would expect salary to be log normally distributed so it would make more sense to use the geometric mean.  We can check this assumption (once we have decided on a model) by graphing the salary and log salary distributions.
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Here we can see that we were correct in assuming that salary would be log normally distributed.  The first graph shows a strong right sided tail while the second, log transformed, graph shows a more normal distribution.

d. If you answered parts a and b correctly, you accounted for the correlated observations used in the analysis. Compare that inference to what you would have obtained had you incorrectly treated the data as independent. In particular, consider whether these incorrect models would have tended to be conservative or anti-conservative when making inference about associations with sex. How would your answer differ when considering associations by year?
We have salary data over multiple years for most of the individuals included in the model.  Because these are repeat measurements on the same people they are likely to be positively correlated.  Since we are using the mean as our statistic in the models for part a and b, we are adding those positively correlated measurements.  This leads to a larger standard error than if the data were independent (i.e. not correlated).  The larger standard error means that they lead to conservative inference.  If we were computing the difference in mean salary (or geometric mean salary) for a 1 year increase in year then our statistic (the difference in means) would be subtracting these positively correlated observations.  This would lead to a smaller standard error and anti-conservative inference.
