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Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #6
March 4, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Wednesday, March 11, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
1. Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
2. Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
Problems 1-3 of the homework relate to the dataset regarding MRI measurements of cerebral atrophy in elderly Americans (mri.doc and mri.txt). In this homework we will focus primarily on associations between mortality and serum LDL as possibly modified by race. 
1. Suppose we are interested in exploring whether any association between time to death and serum LDL is adequately modeled by a relationship in which the log hazard function is linear in LDL. I ask you to compare several different alternative models that allow nonlinearity. In part f, I ask you to plot fitted HR estimates from each of these models on the same axis. In order to have comparability across models, we need to use the same reference group:

· In all parts of this problem where you need to divide the LDL values into intervals, use 70, 100, 130, and 160 mg/dL as breakpoints for the LDL measurements. Stata commands that might be used are:
egen ldlctg= cut(ldl), at(0,70,100,130,160,400)

mkspline sldlA 70 sldlB 100 sldlC 130 sldlD 160 sldlE = ldl
· In all parts of this problem where you model LDL continuously, we will use 1 mg/dL as the reference group (this will accommodate the log transformation). Thus you might create variables in Stata:

g logldl= log(ldl)

g cldl= ldl – 1

g cldlsqr= cldl^2

g cldlcub= cldl^3

a. Fit a regression model in which you test for a linear relationship using a step function as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
I fit a Cox proportional hazards regression model with a linear term for LDL and dummy variables for LDL groups (0-70, 70-100, 100-130, 130-160, and 160-400 mg/dL) as the predictors. To test the hypothesis of no departures from linearity I conducted a multiple partial F Test with robust standard errors comparing this model to a model containing the linear term for LDL as its only predictor. In other words, I test that the 4 coefficients for the dummy variables (the 0-70 group was my reference group) are all zero. This hypothesis test yields a two-sided p-value of 0.567, so we fail to reject the null hypothesis of no departure from linearity.

b. Fit a regression model in which you test for a linear relationship using a quadratic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
I fit a Cox proportional hazards regression model with a linear term for LDL and a quadratic term for LDL as the predictors. To test the hypothesis of no departures from linearity I conducted a partial F Test with robust standard errors comparing this model to a model containing only the linear term for LDL. This is equivalent to a test based on Wald statistics and robust standard errors that the regression coefficient for the quadratic LDL term is equal to zero. This hypothesis test yields a two-sided p-value of 0.055 which is not significant at the 0.05 level so we fail to reject the null hypothesis of no departure from linearity.

c. Fit a regression model in which you test for a linear relationship using a cubic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
I fit a Cox proportional hazards regression model with linear, quadratic, and cubic terms for LDL as the predictors. To test the hypothesis of no departures from linearity I conducted a multiple partial F Test with robust standard errors comparing this model to a model containing only the linear term for LDL. This hypothesis test yields a two-sided p-value of 0.017 which is significant at the 0.05 level so we can reject the null hypothesis of no departure from linearity.

d. Fit a regression model in which you test for a linear relationship using linear splines as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
I fit a Cox proportional hazards regression model with a linear term for LDL as well as linear splines with knots at 70, 100, 130, and 160 mg/dl LDL. To test the hypothesis of no departures from linearity I conducted a multiple partial F test with robust standard errors comparing this model to a model containing only the linear term for LDL. This hypothesis test yields a two-sided p-value of 0.097 which is not significant at the 0.05 level so we fail to reject the null hypothesis of no departure from linearity.

e. Fit a regression model in which you test for a linear relationship using a logarithmic transformation as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

I fit a Cox proportional hazards regression model with a linear term for LDL as well as a term for log-transformed LDL. To test the hypothesis of no departures from linearity I conducted a partial F Test with robust standard errors comparing this model to a model containing only the linear term for LDL. This is equivalent to a test based on Wald statistics and robust standard errors that the regression coefficient for the log-transformed LDL term is equal to zero. This hypothesis test yields a two-sided p-value of 0.078 which is not significant at the 0.05 level so we fail to reject the null hypothesis of no departure from linearity.

f. On the same set of axes, plot the fitted values from each of the above models, as well as a model that includes only the (centered) serum LDL values. Comment on the similarity and/or differences among these models. How might these results guide your choice of a particular model when investigating whether associations are not well described by a linear relationship?
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The three models fit with square, cubic, and log-transformed terms for LDL all indicate a slightly U-shaped trend in fitted log hazard of death across LDL. The fitted log hazard of death for the square and cubic models are quite similar except for values of LDL larger than 200 mg/dL, indicating that not much is changed (or gained) by adding a cubic term in the latter model. The model with linear splines does not show quite the same U-shaped trend but does indicate a decreasing trend in log hazard of death as LDL increases from about 50 mg/dL to about 100 mg/dL, at which point the log hazard of death increases again and then levels off as LDL continues to increase. All of these models already mentioned certainly show departures from the linear trend in log hazard death as LDL increases that is fitted by the model including only centered LDL values. The model with dummy variables shows the same general decreasing trend in log hazard death as LDL increases as does the model with only centered LDL values and does not show the same indication of a slight U-shaped trend as do the other models. But, in using dummy variables the different segments of the step function are constrained to have the same slope.

Looking at the fitted values for these models can help us assess whether there the association between log hazard of death and LDL can be well modeled by a linear relationship. All of the alternative models that we fit could look exactly the same as the model with only centered LDL if each of the additional coefficients in the model were zero. So if we were to have plotted the fitted values for these alternative models and seen little difference between their fitted values and those of the model with only centered LDL, then we would not have any strong indication that the linear relationship between LDL and log hazard death is not a good fit.

2. Consider again a model exploring the associations between time to death and serum LDL when using linear splines. 
a. Explain the interpretation of the regression parameters in such a model.

The estimated coefficients for each of the regression parameters are the estimated slopes for each region of LDL values (between knots). For example, the exponentiated regression parameter for sldlB is the estimated multiplicative change in hazard of death for every one unit increase in LDL between 70 and 100 mg/dL.

b. Is there evidence that the association between time to death and serum LDL is truly U-shaped? Explain your evidence.

There is not evidence that the association between time to death and serum LDL is truly U-shaped. When we look at the regression parameters for the model we fit above with linear splines, we do see that the estimated hazard ratio for a one unit increase in LDL is greater than one between 100 and 130 mg/dL and smaller than one when LDL is between 70 and 100 mg/dL. However, neither of these hazard ratios significantly differs from one based on the Wald-based hypothesis tests for these individual regression parameters, so we do not have enough evidence to show that the association between time to death and serum LDL is truly U-shaped.

3. Suppose we are interested in exploring the associations between time to death and serum LDL as possibly modified by race. In this problem you do not need to provide formal description of the methods or inference, though I do ask at times for specific inferential quantities.
a. Fit a model of time to death regressed on a log transformation of serum LDL, race, and their interaction. Provide an explicit interpretation of each parameter in your model (be sure to include the actual numeric value in your interpretation, but you do not have to provide CI or p values for this part).
We estimate that the hazard is 99.95 % lower in relative value for blacks with 0 mg/dL LDL compared to Asians with 0 mg/dL LDL. We estimate that the hazard is 99.67 % lower in relative value for whites compared to Asians, both with 0 mg/dL LDL. We estimate that the hazard is 1.0935*106 times as high for other races compared to Asians, both with 0 mg/dL LDL. We estimate that the hazard is 85.7 % lower in relative value for every one mg/dL increase in LDL for Asians. We estimate that the ratio of hazards for every one mg/dL increase in LDL is 5.004 times as high for blacks compared to Asians. We estimate that the ratio of hazards for every one mg/dL increase in LDL is 3.223 times as high for whites compared to Asians. We estimate that the ratio of hazards for every one mg/DL increase in LDL is 94.22 % lower for other races compared to Asians.

b. Use the regression analysis in part a to perform a statistical test of the hypothesis that race does not modify the association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.

I conducted a multiple partial F test with robust standard errors to compare this model to one with terms only for log transformed LDL and race, but no interaction. In other words, I tested whether the three regression parameters corresponding to the interaction between race and log transformed LDL were all zero. This test yields a two-sided p-value of 0.046 which is significant at the 0.05 level so we reject the null hypothesis and conclude that there is evidence to show that race modifies the association between time to death and serum LDL.

c. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.

I conducted a multiple partial F test with robust standard errors to test whether the regression coefficient for log transformed LDL and the three interaction terms between log transformed LDL and three race groups were all zero. This test yields a two-sided p-value of 0 which is significant at the 0.05 level so we reject the null hypothesis and conclude that there is an association between time to death and serum LDL.

d. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and race. Make clear which parameters you test and provide a two-sided p value.

I conducted a multiple partial F test with robust standard errors to test whether the regression coefficient for race and the three interaction terms between log transformed LDL and three race groups were all zero. This test yields a two-sided p-value of 0 which is significant at the 0.05 level so we reject the null hypothesis and conclude that there is an association between time to death and race.

e. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no difference in the distribution of time to death between whites and blacks. Make clear which parameters you test and provide a two-sided p value. 
We have to re-run the analysis in part a) with whites as the reference group rather than Asians. Then we want to test whether the coefficient for blacks and the interaction between blacks and log LDL are both zero. We can do this using a multiple partial F test with robust standard errors, which yields a two-sided p-value of 0.541 which is not significant at the 0.05 level so we fail to reject the null and conclude that there is not enough evidence to show that there is a difference in the distribution of time to death between whites and blacks.

Problems 4 of the homework relates to the university salary dataset. 

4. We are interested in raises given to faculty hired in recent years. For this problem, restrict attention to faculty hired in 1990 or later and who started at the university within one year of the year in which they received their highest degree. In order to (at least in part) examine the patterns of raises given to faculty, we will model salaries by sex, calendar year, and an interaction between sex and calendar year. Use such a model to answer the following questions.

a. Is there evidence of sex discrimination in the mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.

In dealing with the correlated observations (a faculty member's salary one year will likely be positively correlated with her/his salary the next year), we have a few options. We could reduce the measurements for each faculty member to just one observation, say mean salary from her/his start year to 1995. We could also use GEE to estimate the correlation of salary measures for each faculty member and then adjust the standard errors of our model to account for this correlation. I choose to use the GEE method (geepack package in R) to fit a linear regression model with salary as the response, sex, year, and their interaction as their predictors, robust standard error estimates and clusters defined by faculty member ID numbers. In other words, my model adjusts its standard errors based on estimated correlation of salary measurements within each faculty member. I conducted a multiple partial chi squared test with robust standard errors to look to see if the coefficients for sex and the interaction between sex and year are significantly different from zero. This test yielded a p-value of 0.0497 so there is evidence of sex discrimination in the mean salary given in recent years.

b. Is there evidence of sex discrimination in the geometric mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.

Yes, there is evidence of sex discrimination in the geometric mean salary given in recent years. I fit a model as in part (a) except with log transformed rather than untransformed salary as the response and performed a multiple partial chi square test with robust standard errors test whether the coefficients for sex and its interaction with year are both zero. The test yields a two-sided p-value less than 0.05 (p = 0.307), giving evidence that sex is associated with geometric mean salary.

c. What are the relative merits of the two models used in parts a and b?

The model in part (a) is perhaps more easily interpretable as people tend to understand means better than geometric means. Also, modeling the mean lets us get back to the total. However, since we expect that changes to salary will happen on a multiplicative scale, the model in part b better represents our scientific understanding of the behavior of salary and can help us gain precision by getting closer to modeling what we expect is the true data-generating mechanism.

d. If you answered parts a and b correctly, you accounted for the correlated observations used in the analysis. Compare that inference to what you would have obtained had you incorrectly treated the data as independent. In particular, consider whether these incorrect models would have tended to be conservative or anti-conservative when making inference about associations with sex. How would your answer differ when considering associations by year?
When we incorrectly treat the data as independent, we get exactly the same point estimates which makes sense since in parts (a) and (b) in accounting for the correlation within faculty member salary observations we are only adjusting our standard error estimates. For part (a), we estimate larger standard errors when we don't account for the correlation within faculty salary measurements and as a result our p-values are larger when we don't account for correlation versus when we do. This makes sense, because when we look at the variance of the slopes (which is what our regression coefficients represent), we are looking at the variance of differences. We know that the variance of a difference when we treat the data as independent will just be a sum of the variances of the components of which we are taking a difference. However, when we account for the correlation between observations on the same faculty member, which we expect to be a positive correlation, then the variance of the difference is the sum of the variances minus some positive term. So, we expect the variance of our slopes to be smaller when accounting for correlated observations compared to when we treat our observations as independent, just as we did in fact see. We see similar patterns in the standard errors and p-values when comparing the models for part (b) with and without accounting for correlation within each faculty members' salary measurements.


