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1. Methods: In each model I am evaluating whether any association between time to death and serum LDL is best modeled by a linear relationship between serum LDL as the predictor and instantaneous risk of death from any cause as the response. The specific models are described below. For all models in question 1 LDL is re-parameterized as (LDL - 1) so we can use LDL of 1 instead of LDL of 0 as the reference group to compare fitted values in all models. To avoid repetition in describing models, I will refer to the centered, untransformed continuous LDL as cLDL.

a. A new variable for LDL is created which is used to model LDL as dummy variables. The categories are separated at 70, 100, 130 and 160 mg/dL, where the first category includes 0 and the last category includes the upper range of LDL in the data. In model a,  time to death is the response and the predictors are cLDL, and LDL modeled as dummy variables as described. I evaluated the parameter LDL as dummy variables to test the hypothesis that there are no departures from linearity. The p value for this test is 0.2369, indicating that none of the slopes for LDL modeled as dummy variables depart from linearity in a statistically significant way. 

b. In the next model I use a quadratic polynomial as an alternative model. The predictors are cLDL and cLDL squared. To test for deviations from linearity, I tested the cLDL squared term. The p value of 0.055 indicates that the slope of the squared term deviates from linearity, but not at a level that is significant at a critical value of 0.05. 

c. After fitting a quadratic, I fit a cubic polynomial as an alternative model. The predictors are cLDL, cLDL squared and cLDL cubed. To test for deviations from linearity, I tested both the squared and cubic terms. The p value of 0.0164 indicates that the slope of one of these terms significantly differs from that of the linear term and is necessary to accurately model the HR.

d. LDL modeled as linear splines, with knots at 70, 100, 130, and 160 mg/dL, is the predictor in the next model. To test for departures from linearity, I tested to see if the slopes (coefficients) in each interval were equal to each other. If they are exactly equal, then LDL is effectively modeled as a straight line. The p value of 0.119 does not indicate that any of these slopes are significantly different from any other slope in this model. This test does not provide evidence that LDL is not best modeled as a linear term. 

e. The last alternative model uses cLDL and log-transformed LDL as predictors. I tested log-transformed LDL to test for departures from linearity. With a p value of 0.0036 we can conclude with confidence that the log-transformed LDL term departs from linearity in a statistically significant way. It is possible that a model including log-transformed LDL as the predictor may give us more precision for inference when modeling an association between time to all-cause mortality and serum LDL at baseline. 

f. Figure 1 shows fitted values for each regression model in a-e, as well as the fitted values for cLDL as the predictor (blue line in the middle of the graph). 

Figure 1: Fitted values for alternative models
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All of these models show a general decreasing trend which corresponds to a lower hazard as baseline serum LDL increases. The step function (LDL modeled as dummy variables) shows distinctly different hazard ratios for each category because categories are defined by a wide range. This alternative model causes us to lose a lot of precision, and does not allow us to make accurate predictions. 


The model using splines may have better precision within groups because it is not borrowing information across the entire range of LDL, but as our test showed, it is not giving a statistically improved fit over the linear term and it is not necessary to fit this flexible a model. 


Because of the difficulty in directly interpreting coefficients from a quadratic or cubic term it would not be logical to use these models if their regression coefficients do not statistically depart from that of the linear model. A log-transformed LDL term by itself could be used to describe differences in HR given multiplicative changes in LDL, but adding a log term to the linear term in the model does not allow us to interpret coefficients. 

2. These questions relate to the model exploring associations between time to death and serum LDL where LDL is modeled using linear splines. Knots are at 70, 100, 130 160 and 400 mg/dL LDL.

a. Each spline interval has its own slope which corresponds to the association between time to death and LDL. The coefficients for the intervals between knots correspond to the slope in that interval. In this regression the slope is the hazard ratio between two groups 1 unit of LDL apart, where the group with the higher level of LDL is the numerator in the ratio. The hazard ratio is constant throughout each spline interval. A small amount of information is borrowed across groups near the knots so the splines will intersect. 

The intercept in the proportional hazards regression corresponds to a group having LDL of 0mg/dL (baseline hazard), which is extremely unlikely if not scientifically impossible. The intercept in this model is not interpretable. 


In my model, the HR for levels of LDL between 0 and 70mg/dL is 0.978. In the range of 0 to 70mg/dL of serum LDL, for a 1 mg/dL absolute difference in LDL, the hazard ratio is 0.978. In this range, someone with an LDL level 1 mg/dL higher has a 0.022% lower instantaneous risk of death from any cause. 


For the range of 70 to 100mg/dL the HR is 0.979. Someone with an LDL level 1 mg/dL higher is 2.1% less likely to die. 


For the range of 100 to 130mg/dL the HR is 0.999. Someone with an LDL level 1 mg/dL higher is 0.091% less likely to die. 


For the range of 130 to 160mg/dL the HR is 0.998. Someone with an LDL level 1mg/dL higher is 0.195% less likely to die. 


For the range of 160 to 400mg/dL the HR is 0.994. Someone with an LDL level 1mg/dL higher is 0.611% less likely to die. 

b. There is no evidence present that the association between time to death and serum LDL is truly U-shaped. For a U-shaped association, the slope for the association will change signs (positive vs negative) once, as compared to an S shape which would have multiple inflection points. In this proportional hazard regression the HR would at the very least have to be below 1 at one interval and above 1 in another interval. In this model the HR consistently stays below 1 at all points where LDL is modeled in our data set. 

3. In this question I am modeling associations between time to death and serum LDL, as possibly modified by race. 

a. Methods: Serum LDL is log-base 10 transformed to create a new predictor variable called log10LDL. Using a cox proportional hazards regression, with time to death as the response, LDL modeled as a log10 transformed continuous variable, race modeled as dummy variables, and the interaction of log10LDL (continuous) and race (dummy) are predictors of this outcome. 

Results: For whites only, the hazard ratio (HR) for a 10-fold increase in LDL is 0.168, with subjects having a higher LDL being at a lower risk of death from any cause. Compared a group defined by white subjects having a set value of LDL, a group defined by white subjects having a 10-fold higher LDL level will have an 83.2% lower risk of death. Keeping LDL constant, blacks have a HR of 0.154 (84.6% decreased risk of death) compared to whites, asians have a HR of 305 (305-fold increased risk of death) compared to whites, and “other” races have a HR of 3.33x10^8 (about a 300 million-fold increased risk of death) compared to whites. The coefficients for the interaction terms correspond to a difference in HR (slope) across races as log-transformed LDL is modeled continuously.

b. The following parameters are tested: the interaction term in the model in section a (interaction between LDL modeled as a continuous log10-transformed variable and race modeled as a dummy variable). The null hypothesis in this test states that all of the coefficients for the interaction term are equal to zero. With a p value of 0.0452 we have evidence that race in some way modifies the association between time to all-cause mortality and serum LDL.

c. The following parameters are tested: log-transformed LDL, and the interaction term (interaction between LDL modeled as a continuous log10-transformed variable and race modeled as a dummy variable). The null hypothesis in this test states that all of the coefficients for terms containing LDL as a predictor are equal to zero. The p value for this test is <0.0001, indicating that at least one of the LDL terms has a slope significantly different from 0. There is a statistically significant association between LDL and time to all-cause mortality in this model. 

d. The following parameters are tested: race (modeled as a dummy variable), and the interaction term (interaction between LDL modeled as a continuous log10-transformed variable and race modeled as a dummy variable). The null hypothesis in this test states that all of the coefficients for terms containing race as predictor are equal to zero. The p value for this test is <0.0001, indicating that at least one of the race terms has a slope significantly different from 0. There is a statistically significant association between race and time to all-cause mortality in this model. 

e. The following parameters are tested: race equal to blacks, using whites as a reference group, and the interaction term of blacks and log-transformed LDL, using the interaction between whites and log-transformed LDL as a reference group. The null hypothesis in this test states that the regression coefficients for all terms modeling whites and and all terms modeling blacks are equal. The p value for this test is 0.5416, indicating that we lack evidence to show that there is a difference in distributions of time to death for whites and blacks. 

4. Methods/Explanation of Data Used: The salary data set is used to test for evidence of sex bias in faculty salaries in the most recent years (1990-1995) represented. The data is restricted to faculty who started at the university within one year of getting their highest degree. This is an attempt to normalize relative experience across subjects. In part a, mean monthly salary is the response, where salary is modeled as an untransformed continuous variable. In part b, geometric mean salary is the response, where salary is modeled as a log-transformed continuous variable. The predictors of interest are sex, modeled as a binary indicator variable for females, and year modeled as a continuous variable. To adjust for the time trend in faculty raises in each year the interaction of sex (binary) and year (continuous) is used as our third predictor in the model. In order to interpret the intercept in this model the year is centered at 1990. Because data across years is correlated by subject, this correlation is accounted for in our models. 

a. The first regression model (a) estimates mean monthly salary as response. In 1990 the estimated mean monthly salary of male faculty is $4305, and the mean monthly salary for female faculty is $491 less than male faculty. The confidence interval for this estimate in difference of means tells us that our data would not be unusual if the true difference in mean salaries for female faculty is $1019 lower to $36.9 higher per month compared to male faculty. Because this difference includes 0 and our p value is 0.068 I conclude that this difference is not statistically significant. 
b. The second regression model (b) estimates geometric mean monthly salary as response. In 1990 the estimated geometric mean monthly salary of male faculty is $4211, and for female faculty the geometric mean monthly salary is 11.6%, or $487, lower. The confidence interval for this estimate in difference of geometric means tells us that our data would not be unusual if the true difference in geometric mean salaries for female faculty is 0.642 to 21.3% lower than males in 1990. The p value of 0.039 for the coefficient for sex in this model tells us that this difference in statistically significant. 
c. The merit to using model a is that the absolute difference in salaries is very easy to communicate to someone for practical purposes. It is also easy to use the estimated mean value in a mathematical equation. The merit to using model b is based on the fact that the salary variable is log-normally distributed with a skew to the right. For this type of distribution the geometric mean is a more precise estimation. Since pay raises are given on a multiplicative scale (raises given by % increases) it is easy to discuss a 1% pay increase over time versus an absolute amount of money. Differences in mean salaries between sexes may be propagated over time by giving a steady pay increase. Or, there could be a difference of differences in salary being propagated. 
d. Table 1 shows the difference in regression coefficients, 95% confidence intervals and p values for models taking into account correlated data and those which do not. The models which treat data as independent give anti-conservative inference; smaller p values and narrower confidence intervals. The p value changes from 0.068 in model a to 0.032 without clustering, and the p value changes from 0.039 to 0.009 in model b without clustering.
Table 1: Regression coefficients for models a and b

	
	Regression coefficient
	95% CI
	p value

	Model a as correlated data
	-491 (female)
	-1019, 36.9
	0.068

	Model a as independent data
	-491 (female)
	-939, -43.6
	0.032

	Model b as correlated data
	-0.123 (female)
	-0.240, -0.00644
	0.039

	Model b as independent data
	-0.123 (female)
	-0.215, -0.0310
	0.009



[image: image1]