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Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Wednesday, March 11, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
1. Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
2. Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
Problems 1-3 of the homework relate to the dataset regarding MRI measurements of cerebral atrophy in elderly Americans (mri.doc and mri.txt). In this homework we will focus primarily on associations between mortality and serum LDL as possibly modified by race. 
1. Suppose we are interested in exploring whether any association between time to death and serum LDL is adequately modeled by a relationship in which the log hazard function is linear in LDL. I ask you to compare several different alternative models that allow nonlinearity. In part f, I ask you to plot fitted HR estimates from each of these models on the same axis. In order to have comparability across models, we need to use the same reference group:

· In all parts of this problem where you need to divide the LDL values into intervals, use 70, 100, 130, and 160 mg/dL as breakpoints for the LDL measurements. Stata commands that might be used are:
egen ldlctg= cut(ldl), at(0,70,100,130,160,400)

mkspline sldlA 70 sldlB 100 sldlC 130 sldlD 160 sldlE = ldl
· In all parts of this problem where you model LDL continuously, we will use 1 mg/dL as the reference group (this will accommodate the log transformation). Thus you might create variables in Stata:

g logldl= log(ldl)

g cldl= ldl – 1

g cldlsqr= cldl^2

g cldlcub= cldl^3

a. Fit a regression model in which you test for a linear relationship using a step function as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

Cox proportional hazards was used to model the relationship between serum ldl and time to death.  Linearity testing was performed by inclusion of a linear term for the centered serum ldl level (serum ldl – 1) and a dummy variable with levels 0-70, >70-100, >100-130, >130-160, and >160-maximum mg/dL. The p-value from post-regression Wald test for dummy variables was evaluated for a departure from linearity. Based on p=0.36, we do not find evidence that the relationship is not well-characterized by a linear trend (null hypothesis is linearity). 
b. Fit a regression model in which you test for a linear relationship using a quadratic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

Cox proportional hazards was used to model the relationship between serum ldl and time to death.  Linearity testing was performed by inclusion of a linear term for the centered serum ldl level (serum ldl – 1) and quadratic term for the centered serum ldl. The p-value from the quadratic ldl slope term was evaluated for a departure from linearity. Based on p=0.055, we find modest (but not statistically significant) evidence that the relationship is not well-characterized by a linear trend.

c. Fit a regression model in which you test for a linear relationship using a cubic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

Cox proportional hazards was used to model the relationship between serum ldl and time to death.  Linearity testing was performed by inclusion of a linear term for the centered serum ldl level (serum ldl – 1) and both quadratic and cubic terms for the centered serum ldl. The p-value from post-regression Wald test for quadratic and cubic centered ldl terms was evaluated for a departure from linearity. Based on statistically significant p=0.0164, we find evidence that the relationship is not well-characterized by a linear trend.

d. Fit a regression model in which you test for a linear relationship using linear splines as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

Cox proportional hazards was used to model the relationship between serum ldl and time to death.  Linearity testing was performed by inclusion of terms for linear splines (0-70, 70-100, 100-130, 130-160, 160+). The p-value from post-regression Wald test for equality of slope terms for linear splines was evaluated for a departure from linearity. Based on p=0.119, we do not find evidence that the relationship is not well-characterized by a linear trend.

e. Fit a regression model in which you test for a linear relationship using a logarithmic transformation as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

Cox proportional hazards was used to model the relationship between serum ldl and time to death.  Linearity testing was performed by inclusion of a linear term for the centered serum ldl level (serum ldl – 1) and the log-base-e-transformed serum ldl. The p-value from the log-transformed slope a term was evaluated for a departure from linearity. Based on p=0.004, we find evidence that the relationship is not well-characterized by a linear trend. 
f. On the same set of axes, plot the fitted values from each of the above models, as well as a model that includes only the (centered) serum LDL values. Comment on the similarity and/or differences among these models. How might these results guide your choice of a particular model when investigating whether associations are not well described by a linear relationship?
The models provide very different hazards, especially over the lower range of centered ldl, that is, from about 200 mg/dl and below. The quadratic and cubic fit provide somewhat similar values over the middle range of the data, although the spline fit overlaps most with the quadratic fit. The log fit is marked by the flattest slope, though all models show reductions in slope from about 100 mg/dl onward, with the exception of the linear fit. The dummy fit would allow for the greatest differential between cldl levels and hazards at lower values, though the spline fit appears to be the most flexible of the fitted models. Based on the observed departures from linearity in Models C (cubic fit) and Model E (logarithmic fit), I would select either of these in order to accommodate non-linearity. 
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2. Consider again a model exploring the associations between time to death and serum LDL when using linear splines. 
a. Explain the interpretation of the regression parameters in such a model.  

Each regression parameter is the estimate of the exponentiated ratio of hazards between two groups both between the same knots in the spline but differing by one unit in centered ldl.  

For example, the exponentiated slope parameter is the hazard ratio (HR=0.978) for two groups within spline A (0-70 mg/dl) differing by one mg/dL in ldl. The same interpretation is true of all other exponentiated slope parameters. 
b. Is there evidence that the association between time to death and serum LDL is truly U-shaped? Explain your evidence. 

Based on p=0.1191, we did not find evidence to reject the null hypothesis that the relationship is not well-characterized by a linear ldl. In addition, based on regression parameters, we do not see the characteristic change in directionality of the HR (from >1 to <1, or in terms of the estimated log-hazards, differences in slopes) at the extreme values of the predictors. However, in actuality we only have relatively small range of data, and a u-shape could model the trend given the very extreme values that we do not have data on. 
3. Suppose we are interested in exploring the associations between time to death and serum LDL as possibly modified by race. In this problem you do not need to provide formal description of the methods or inference, though I do ask at times for specific inferential quantities.
a. Fit a model of time to death regressed on a log transformation of serum LDL, race, and their interaction. Provide an explicit interpretation of each parameter in your model (be sure to include the actual numeric value in your interpretation, but you do not have to provide CI or p values for this part).

Race was modeled as a dummy variable, while ldl was log-transformed and modeled as a continuous predictor. The interaction was also modeled. 
For main effects, the exponentiated slope term for the log-transformed ldl parameter (HR: 0.461) represents the ratio of hazards of death for two groups of white individuals (reference group) differing by one unit in log-transformed ldl. The exponentiated slope terms for all three racial groups (HR for black: 0.154; HR for Asian: 304.98; HR for “Other”: 3.33*108) represent the ratio of hazards with white individuals as reference while holding the log-transformed ldl constant at 1 mg/dl (untransformed ldl = 0 ug/dl) . 

The exponentiated slope of the interaction terms represent ratios of hazard ratios for groups differing on both log-ldl and race. For example, for black individuals compared with white individuals differing by one unit in log-transformed ldl the ratio of HRs is 1.55. For Asian individuals compared with white individuals differing by one unit in log-transformed ldl the ratios of HRs is 0.310. For “Other” ethnic group individuals compared with white individuals differing by one unit in log-transformed ldl the ratio of HRs is 0.018.

b. Use the regression analysis in part a to perform a statistical test of the hypothesis that race does not modify the association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.

The p-value from post-regression Wald test for the interaction term between race and log-transformed serum ldl was evaluated to test for a statistically significant interaction. Based on p=0.0452, we reject the null hypothesis of no interaction between race and the log-transformed serum ldl. This suggests that race modifies the association between time to death and serum ldl. 
c. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.

The p-value from post-regression Wald test for the 1) log-transformed ldl term  and 2) the log-ldl and race interaction term in the regression was evaluated to test an association between time to death and serum ldl. Based on p<0.001, we reject the null hypothesis, in favor of a statistically significant association between time to death and serum ldl. 
d. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and race. Make clear which parameters you test and provide a two-sided p value.

The p-value from post-regression Wald test for 1) the dummy race variable and 2) the log-ldl and race interaction term in the regression was evaluated to test an overall association between time to death and race. Based on p<0.0001, we reject the null hypothesis, in favor of a statistically significant association between time to death and race.   

e. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no difference in the distribution of time to death between whites and blacks. Make clear which parameters you test and provide a two-sided p value. 

The p-value from post-regression Wald test for 1) the black race term (vs. white reference) and 2) the black race (vs. white reference) and log-ldl interaction term was evaluated to test for a difference between blacks and white for time to death. Based on p=0.542, we fail to reject the null hypothesis of no difference between black and white participants in time to death.   


Problems 4 of the homework relates to the university salary dataset. 

4. We are interested in raises given to faculty hired in recent years. For this problem, restrict attention to faculty hired in 1990 or later and who started at the university within one year of the year in which they received their highest degree. In order to (at least in part) examine the patterns of raises given to faculty, we will model salaries by sex, calendar year, and an interaction between sex and calendar year. Use such a model to answer the following questions.

a. Is there evidence of sex discrimination in the mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.

I chose to model the interaction of salary and year as evidence of sex discrimination, that is, mean differences in both beginning salary and the rate of salary increase (slope) for male and female faculty in this truncated dataset. Thus, the p-value from post-regression Wald test for 1) the sex term (male vs. female reference) and 2) the sex and year interaction term was evaluated to test for a difference between males and females for mean salary.  Based on a statistically significant p=0.0498, there is evidence to suggest an association for sex and mean salary in recent years based on this model. 
b. Is there evidence of sex discrimination in the geometric mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.

As above, I chose to model the interaction of salary and year as evidence of sex discrimination, that is, geometric mean differences in both beginning salary and the rate of salary increase (slope) for male and female faculty in this truncated dataset. Thus, the p-value from post-regression Wald test for 1) the sex term (male vs. female reference) and 2) the sex and year interaction term was evaluated to test for a difference between males and females for geometric mean salary.  Based on a statistically significant p=0.0225, there is evidence to suggest an association for sex and geometric mean salary in recent years based on this model. 
c. What are the relative merits of the two models used in parts a and b?

Both models adjust for the interaction of sex and year of the data, which is useful in evaluating the differences in annual raises. The linear model that gives the mean salary difference is useful in that it provides for an additive effect of gender on salary and does not downweight outlier data points. The assumption here could be that the outlier datapoints are relevant, that is, they could be all among males, in which case we would want to capture that within our summary measures.  

In contrast, it could also be useful to talk about multiplicative differences in salary, as annual raise is typically based on a percentage of annual salary. Thus, modeling the geometric mean would be ideal. In addition, we might seek to downweight outlier datapoints that do not help to answer the question of sex bias in salary and contribute unnecessarily to the variance. 
d. If you answered parts a and b correctly, you accounted for the correlated observations used in the analysis. Compare that inference to what you would have obtained had you incorrectly treated the data as independent. In particular, consider whether these incorrect models would have tended to be conservative or anti-conservative when making inference about associations with sex. How would your answer differ when considering associations by year?

Parameters from adjusted and unadjusted analyses are shown in the below table. As can be seen, the standard error terms are much larger when adjusting for the 123 clusters of data (repeat measures on the same faculty member) on the participant id term. This would suggest that the incorrect models (unadjusted models) will have anticonservative inference. In this case, the answers to A and B do not change (because there are no losses of statistical significance of the partial test for sex and the interaction in the un-adjusted analyses). However, in both cases, the unadjusted results are more imprecise due to the positive correlation in the data. 

	
	Adjusted Correlated Data
	Not Adjusted Correlated Data

	Regression A
	Slope Parameter 123 clusters
	SE
	P-value
	Slope Parameter
	SE
	P-value

	Males
	2417.551
	10129.64
	0.812
	2417.551
	5852.126
	0.68

	Yr degree
	192.1481
	63.64649
	0.003
	192.1481
	33.6883
	<0.001

	Males * Yr degree
	-20.7744
	111.1847
	0.852
	-20.7744
	64.3621
	0.747

	Intercept
	-13151.9
	5790.517
	0.025
	-13151.9
	3057.285
	<0.001

	Regression B
	
	
	
	
	
	

	Males
	1.245575
	2.022568
	0.539
	1.245575
	1.144077
	0.277

	Yr degree
	0.044542
	0.013331
	0.001
	0.044542
	0.007027
	<0.001

	Males * Yr degree
	-0.01238
	0.022135
	0.577
	-0.01238
	0.012553
	0.324

	Intercept
	4.291132
	1.216084
	0.001
	4.291132
	0.63952
	<0.001


