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Biost 515: Biostatistics II

Emerson, Winter 2015
Homework #6
March 4, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Wednesday, March 11, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
1. Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
2. Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
Problems 1-3 of the homework relate to the dataset regarding MRI measurements of cerebral atrophy in elderly Americans (mri.doc and mri.txt). In this homework we will focus primarily on associations between mortality and serum LDL as possibly modified by race. 
1. Suppose we are interested in exploring whether any association between time to death and serum LDL is adequately modeled by a relationship in which the log hazard function is linear in LDL. I ask you to compare several different alternative models that allow nonlinearity. In part f, I ask you to plot fitted HR estimates from each of these models on the same axis. In order to have comparability across models, we need to use the same reference group:

· In all parts of this problem where you need to divide the LDL values into intervals, use 70, 100, 130, and 160 mg/dL as breakpoints for the LDL measurements. Stata commands that might be used are:
egen ldlctg= cut(ldl), at(0,70,100,130,160,400)

mkspline sldlA 70 sldlB 100 sldlC 130 sldlD 160 sldlE = ldl

· In all parts of this problem where you model LDL continuously, we will use 1 mg/dL as the reference group (this will accommodate the log transformation). Thus you might create variables in Stata:

g logldl= log(ldl)

g cldl= ldl – 1

g cldlsqr= cldl^2

g cldlcub= cldl^3

a. Fit a regression model in which you test for a linear relationship using a step function as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
We fit a model regressing instantaneous risk of hazard on serum LDL, testing for a linear relationship by including a term modeling serum LDL continuously (centered at 1 mg/dL as the reference group) and as a step function (dummy variables). We used robust standard error estimates to allow for the possibility of non-proportional hazards. To test the hypothesis that there were no departures from linearity we tested that the parameters for the step function were simultaneously equal to zero using the multiple-partial F-test. 10 subjects missing data on LDL were omitted from the analysis. Based on a p-value from the multiple partial F-test of 0.361 we cannot reject the null hypothesis that there was no departure from linearity.
b. Fit a regression model in which you test for a linear relationship using a quadratic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
We fit a model regressing instantaneous risk of hazard on serum LDL, testing for a linear relationship by including a term modeling serum LDL continuously and modeling serum LDL squared, both centered at 1 mg/dL. We used robust standard error estimates to allow for the possibility of non-proportional hazards. To test the null hypothesis that there were no departures from linearity we tested that the parameter for the squared term was equal to zero. 10 subjects missing data on LDL were omitted from the analysis. Robust standard error estimates were used to allow for the possibility of non-proportional hazards. The estimated parameter value (exponentiated) for the squared term was 1.00 (exponentiated 95% CI ~1.00-~1.00), and based on a p-value of 0.0548 we cannot reject the null hypothesis that there was no departure from linearity.
c. Fit a regression model in which you test for a linear relationship using a cubic polynomial as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
We fit a model regressing instantaneous risk of hazard on serum LDL, testing for a linear relationship by including a term modeling serum LDL continuously and modeling serum LDL squared and cubed, all three centered at 1 mg/dL. To test the null hypothesis that there were no departures from linearity we tested that the parameters for the squared term and cubic term were simultaneously equal to zero. 10 subjects missing data on LDL were omitted from the analysis.  Robust standard error estimates were used to allow for the possibility of non-proportional hazards.  Based on a multiple partial F-test (testing if the squared and cubic terms were simultaneously equal to zero) we obtain a p-value of 0.017. Thus we reject the null hypothesis that both are equal to zero, and therefore reject the null hypothesis of no deviation from linearity.
d. Fit a regression model in which you test for a linear relationship using linear splines as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).
We fit a model regressing instantaneous risk of hazard on serum LDL, testing for a linear relationship by including a term modeling serum LDL continuously and modeling serum LDL as linear splines with knots at 70, 100, 130, and 160. To test the null hypothesis that there were no departures from linearity we tested that the parameters for linear splines were simultaneously equal to zero. 10 subjects missing data on LDL were omitted from the analysis. Robust standard error estimates were used to allow for the possibility of non-proportional hazards. Based on a multiple partial F-test (testing if the linear splines terms were simultaneously equal to zero) we obtain a p-value of 0.12. Thus we cannot reject the null hypothesis that all are equal to zero, and therefore cannot reject the null hypothesis of no deviation from linearity.

e. Fit a regression model in which you test for a linear relationship using a logarithmic transformation as an alternative model. Briefly describe the model you fit and the parameters you evaluated to test the hypothesis that there were no departures from linearity. Provide a two-sided p value of the test. (Save fitted values for use in part f).

We fit a model regressing instantaneous risk of hazard on serum LDL, testing for a linear relationship by including a term modeling serum LDL continuously (centered at 1 mg/dL) and modeling logarithmically transformed serum LDL (base e). To test the null hypothesis that there were no departures from linearity we tested that the parameter for the log transformed term was equal to zero. 10 subjects missing data on LDL were omitted from the analysis. Robust standard error estimates were used to allow for the possibility of non-proportional hazards. The estimated parameter value (exponentiated) for the logarithmically transformed term was 0.36 (exponentiated 95% CI 0.181-0.72), and based on a p-value of 0.0036 we reject the null hypothesis that there was no departure from linearity.

f. On the same set of axes, plot the fitted values from each of the above models, as well as a model that includes only the (centered) serum LDL values. Comment on the similarity and/or differences among these models. How might these results guide your choice of a particular model when investigating whether associations are not well described by a linear relationship?
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These models are all fairly different. Since the results differ so much (especially at the tails), we would need to think carefully before analyzing the data which model we believed the most. However, all of them show a relatively similar relationship with the estimated hazard ratios in that they are all decreasing with increasing serum LDL. Models B, C, D, and E are all far lower hazard ratios than models A and the linear term only model. A prioi, as usual, I would trust a logarithmically transformed relationship only because this is a biological process.
2. Consider again a model exploring the associations between time to death and serum LDL when using linear splines. 
a. Explain the interpretation of the regression parameters in such a model.

In a model exploring the association between time to death and serum LDL using only linear splines (with knots at 70, 100, 130, and 160 mg/dL), then the regression parameters are the estimated difference in θY|X (log hazard ratio) between two groups in the same interval (i.e. between 0 and 70 mg/dL) with a 1 mg/dL difference in serum LDL. Each regression parameter (there will be 4) will have the same interpretation within its given interval.
b. Is there evidence that the association between time to death and serum LDL is truly U-shaped? Explain your evidence.

To test for a truly u-shaped function, we look at the partial z-tests for the smallest LDL group (0 to 70 mg/dL) and the largest LDL group (160-max mg/dL). To be u-shaped, we must have significant results in each of these, and have opposite signs on the coefficients. We see that based on the partial z-tests, first of all the coefficients are all negative, so there is no evidence for u-shape. Second, only the coefficient for the minimum group is significant (p=0.19). The others are all >0.13 (and especially large is the last group, at p=.68). 
3. Suppose we are interested in exploring the associations between time to death and serum LDL as possibly modified by race. In this problem you do not need to provide formal description of the methods or inference, though I do ask at times for specific inferential quantities.
a. Fit a model of time to death regressed on a log transformation of serum LDL, race, and their interaction. Provide an explicit interpretation of each parameter in your model (be sure to include the actual numeric value in your interpretation, but you do not have to provide CI or p values for this part).
We fit a model of time to death regressed on logarithmically transformed serum LDL (base 1.1 so that we can talk about 10% increases in serum LDL), race (modeled as a dummy variable with whites as the reference group) and their interaction. We interpret the estimated regression parameters as follows:
For each 10% increase in serum LDL, the log hazard decreases by 0.0724 in the White group (estimate -7.236x10^-2). 

The log hazard in Blacks was 1.80 lower than that of Whites with the same serum LDL (estimate 1.80). 

The instantaneous risk of death in Asians was 5.86 higher that of Whites with the same serum LDL (estimate 5.86). 

The instantaneous risk of death in Others was 19.4 higher than that of Whites with the same serum LDL (estimate 19.4).

b. Use the regression analysis in part a to perform a statistical test of the hypothesis that race does not modify the association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.
For the rest of this problem, black refers to the dummy variable of blacks vs whites, Asian refers to the dummy variable for Asians vs whites, and other refers to the dummy variable for other vs whites.
We simultaneously test that the parameters for the interaction terms (log LDL*black, log LDL*Asian, log LDL*other) are equal to zero using a multiple-partial F-test with robust standard error estimates and three degrees of freedom. Based on this test and a p-value of 0.044, we reject the null hypothesis that all three parameters are equal to zero, and conclude that race does modify the association between time to death and LDL.
c. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and serum LDL. Make clear which parameters you test and provide a two-sided p value.
We simultaneously test that the parameters for the interaction terms (log LDL*black, log LDL*Asian, log LDL*other) are equal to zero and the log LDL term is equal to zero using a multiple-partial F-test with robust standard error estimates and four degrees of freedom. Based on this test and a p-value of <0.005, we reject the null hypothesis that all four parameters are equal to zero and conclude that there is an association between time to death and serum LDL.
d. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no association between time to death and race. Make clear which parameters you test and provide a two-sided p value.
We simultaneously test that all parameters involving race (black vs white, Asian vs white, and the interaction terms) are equal to zero using a multiple-partial F-test with robust standard error estimates and six degrees of freedom. Based on this test and a p-value of <0.005, we reject the null hypothesis that all six parameters are equal to zero and conclude that there is an association between time to death and race.
e. Use the regression analysis in part a to perform a statistical test of the hypothesis that there is no difference in the distribution of time to death between whites and blacks. Make clear which parameters you test and provide a two-sided p value. 
We simultaneously test that the parameters involving the black dummy variable (black and the interaction term black*log LDL) are equal to zero using a multiple-partial F-test with robust standard error estimates and two degrees of freedom. Based on this test and a p-value of 0.54, we cannot reject the null hypothesis that both parameters are equal to zero, and conclude that we cannot determine if there is a difference in the distribution of time to death between whites and blacks.
Problems 4 of the homework relates to the university salary dataset. 

4. We are interested in raises given to faculty hired in recent years. For this problem, restrict attention to faculty hired in 1990 or later and who started at the university within one year of the year in which they received their highest degree. In order to (at least in part) examine the patterns of raises given to faculty, we will model salaries by sex, calendar year, and an interaction between sex and calendar year. Use such a model to answer the following questions.

a. Is there evidence of sex discrimination in the mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.
We fit a generalized estimating equations model, regressing salary on a dummy variable comparing females to males, a continuous variable modeling year, and the interaction between the two modeled as the product, and clustering subjects with the same id so that we can get the correct standard errors. We use robust standard error estimates calculated using the Huber-White method. Our null hypothesis for this question is that there is no sex discrimination, and so we perform a multiple-partial F-test testing whether the female term and interaction term are simultaneously equal to zero. Based on a p-value of <0.00005, we reject the null hypothesis of no sex discrimination in mean salary in favor of the alternative, that sex discrimination exists in mean salary given in recent years.
b. Is there evidence of sex discrimination in the geometric mean salary given in recent years? You do not have to provide full inference, but you should make clear the basis for your answer.
We fit a generalized estimating equations model, regressing logarithmically transformed salary on a dummy variable comparing females to males, a continuous variable modeling year, and the interaction between the two modeled as the product, and clustering subjects with the same id so that we can get the correct standard errors. We use robust standard error estimates calculated using the Huber-White method. Our null hypothesis for this question is that there is no sex discrimination, and so we perform a multiple-partial F-test testing whether the female term and interaction term are simultaneously equal to zero. Based on a p-value of <0.00005, we reject the null hypothesis of no sex discrimination in geometric mean salary in favor of the alternative, that sex discrimination exists in geometric mean salary given in recent years.
c. What are the relative merits of the two models used in parts a and b?
Increases in salary are usually on a multiplicative scale, and therefore modeling geometric mean salary increase should decrease heteroscedasticity and increase precision in this analysis. Also, using the model from (b) could potentially change the effect modification by year; since we know that there is always one summary measure in which effect modification doesn’t exist, the geometric mean could be the one in these data. Or, more likely, the degree of effect modification could change. However, the model in part (a) allows us to recover the total amount of money, if we were interested in this quantity.
d. If you answered parts a and b correctly, you accounted for the correlated observations used in the analysis. Compare that inference to what you would have obtained had you incorrectly treated the data as independent. In particular, consider whether these incorrect models would have tended to be conservative or anti-conservative when making inference about associations with sex. How would your answer differ when considering associations by year?
If we naively fit linear models (i.e. did not correct for the correlated data by fitting the generalized estimating equations) with the same variables as in (a) and (b), we would see markedly different standard error estimates and partial F-test p-values. However, when running the multiple-partial F-tests, we will see about the same inference. This is due to the fact that the F-tests are considering the ratio of the sum of squares of the fitted values minus the true values and the sum of squares of the residuals. The fitted values should not change (as we covered in discussion section), but the standard error estimates will be off. We see that the standard error estimates in (d) are much larger than those in (a) and (b), which is to be expected; since the measurements are positively correlated. For an individual, as time increases we expect salary to increase as well. Therefore, since we are considering the mean – an additive contrast – these positive correlations will inflate our standard error estimates (recall that Var(Y+X) = Var(Y) + Var(X) + 2ρ*sqrt[Var(Y)Var(X)] ). Therefore we will see worse inference when considering the partial tests.

