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Biost 518: Applied Biostatistics II
Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3

January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.

Methods:  Descriptive statistics were calculated for a series of potential predictors of interest were calculated for both possible SGA (small for gestational age) outcome groups, and for the total sample. For continuous variables, mean, standard deviation, and range were calculated, and percentages were calculated for binary variables. SGA is a binary variable- either an infant was small for gestational age (below the tenth percentile) or was not. There was one subject with missing SGA data, who was omitted from all descriptive statistic analyses. There were 6 subjects with missing data for height, 0 subjects with missing maternal age, 0 subjects with missing data on number of previous deliveries, 4 subjects with missing smoking status, 4 subjects with missing sex of infant data, and 5 subjects with missing gestational age on delivery. 
Subjects with missing data were omitted from just the specific analysis for that variable. Birth weight was not included because it was not considered a predictor in this study.
Results: Data was available on 755 subjects, and no SGA data was missing so all descriptive analysis was conducted on all 755 with SGA data. Subjects with missing data for specific variables were left out for only those specific analyses (these missing subjects are defined in the methods section). Of the 755 subjects with SGA data, 105
 subjects were small for gestational age, and 650 were not. Table 1 shows descriptive information for each SGA group, and for the total sample. A majority of infants that were small for gestational age (SGA) were male (57.7%), whereas males made up just under 50% of the not SGA group and the total sample, so sex could be a potential confounder in this group. Mother’s mean height was slightly less (154.6 cm) in the SGA group, as compared to the not SGA group (157.0 cm). On average, mothers of SGA babies were younger than mothers of not SGA babies, and had less prior deliveries. The SGA group contained a notably larger proportion of smoking mothers than the not SGA group (43.3% versus 28.8%, respectively). Average gestational age of delivery also tended to be lower for the SGA group. 

Table 1. 

	
	SGA (Small for gestational age) status

	
	Small for Gestational Age 

(n = 105)
	Not Small for Gestational Age

(n = 650)
	Total Sample

 (n = 755)

	Male (%)
	57.7% 
	47.6%
	49.0 %

	Mother’s height (cm)
	154.6 (5.9, 142-172)
	157.0 (6.5, 106-176)
	156.7 (6.5, 106-176)

	Mother’s age at enrollment (years)
	23.8 (4.9, 16-35)
	24.9 (5.4, 14-43)
	24.8 (5.4, 14-43)

	Number of prior deliveries
	0.82 (1.08, 0-6)
	1.12 (1.22, 0-6)
	1.09 (1.21, 0-6)

	Smokers (%)
	43.3%
	28.8%
	30.8%

	Gestational age at delivery (weeks)
	37.9 (2.2, 30-42)
	39.4 (1.2, 38-44)
	39.2 (1.5, 30-44)


*data reported as “mean (sd, min-max)” for continuous variables. 

2. Perform
 a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking. 

Methods: A logistic regression was performed with robust standard errors to examine the association between maternal smoking and SGA. Maternal smoking was the independent variable and SGA was the dependent variable in the regression. A type I error rate of 0.05 is used and 95% confidence interval calculated.
 751 subjects were included in the analysis, excluding the 4 subjects with missing data on smoking status. 

Results: An
 odds ratio of 1.89 was calculated with robust standard error 0.41, meaning that for every one unit change in smoking status (i.e., being a smoker instead of a non-smoker), 
we would see an 89% increase in the odds of having a SGA child. A 95% confidence interval indicates that the observed odds ratio would not be unusual if the true odds radio fell between 1.24 and 2.89
. Wald chi-squared value of 8.67 was calculated (p = 0.003
). Thus, we reject the null hypothesis that there is no change in odds of SGA based on maternal smoking status. Therefore, we can conclude that there is an association between maternal smoking and odds of having an SGA child.
b. Use 
the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

From the regression model parameter estimates using the logit command, we get a log odds of 0.6367768 of SGA for being a smoker. This gives the y = mx + b equation of SGA = 0.6367768*x – 2.055861. So, for a non-smoker, x = 0, and the log odds of SGA is -2.055861 (the intercept) and the odds is 0.128. For a smoker, x = 1 and the log odds of SGA is 0.6367768 – 2.055861 = -1.4190842 and the odds is 0.2419. From having the odds, we can get the probability using the formula probability = odds/(1+odds), so probability of SGA for non-smokers is 0.128/(1 + 0.128) = 0.113, and the probability of SGA for smokers is 0.2419/(1+0.2419) = 0.1948.

Based on the descriptive statistics (using the number of subjects in each group for both SGA outcome and smoking status) the odds of SGA for non-smokers are 59/461 = 0.13, and the odds of SGA for smokers are 45/186 = 0.2418. The probability of having an SGA baby for non-smokers is 59/520 = 0.11, and the probability of having an SGA baby for smokers is 45/231 = 0.1948. 

The odds and probabilities are the same when comparing calculations form descriptive statistics and from regression model parameter estimates.
c. There
 were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

Creating an indicator for nonsmoker gives the inverse response to the previous regression model- an odds ratio of 0.529 indicating a 52.9% decrease in odds of delivery of an SGA child associated with being a non-smoker, and opposed to being a smoker. The intercept was different, and the confidence interval was the inverse of the confidence interval in the previous analysis. 
The Wald chi-squared value (8.67) and p-value (0.003) were the same.

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

This gave the same odds ratio (0.52899) with robust standard error 0.11 as question 2ci. This odds ratio indicates a 52.9% decrease in odds of delivery of having a NOTSGA child associated with being a smoker. The intercept was different, and the confidence interval was the inverse of the confidence interval in the previous analysis
. The Wald chi-squared value (8.67) and p-value (0.003) were the same.
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
This gave the same odds ratio (1.89) as the original analysis, SGA on predictor SMOKER. This odds ratio indicates an 89% increase in odds of delivery of a non-SGA child associated with being non-smokers.
 The confidence interval, intercept, chi-squared value and p-value were also all the same as this original analysis. 
3. Repeat
 problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
a. Methods: A linear regression was performed with robust standard errors to examine the association between maternal smoking and SGA
. Maternal smoking was the independent variable and SGA was the dependent variable in the regression. A type I error rate of 0.05 is used and 95% confidence interval calculated.

Results: An coefficient (slope) of 0.081 was calculated with robust standard error 0.03, meaning that for every one unit change in smoking status (i.e., being a smoker instead of a non-smoker), we would see an absolute increase of 0.08 in the risk of having a SGA child. A 95% confidence interval indicates that this observation would not be unusual if the true risk difference fell between 0.023 and 0.139. These results were statistically significant (p = 0.006) thus we reject the null hypothesis that there was no difference in risk of having an SGA child between smoking groups. Therefore, we can conclude that there is an association between maternal smoking and absolute increase in risk of having an SGA child.

b. 
The linear regression output gives a linear equation of SGA = 0.0813437x + 0.1134615, with x being smoking status. For non-smokers, the risk (or probability) of SGA is just the intercept, 0.113. For smokers, the risk of SGA is 0.0813437 + 0.1134615 = 0.1948. From the probability, we can calculated the odds using odds = p/(1-p). So for non-smokers, the odds of having an SGA child are 0.11346/(1-0.11346) = 0.12798. For smokers, the odds of having an SGA child are 0.1948/(1-0.1948) = 0.2419. 
Based on the descriptive statistics (using the number of subjects in each group for both SGA outcome and smoking status) the odds of SGA for non-smokers are 59/461 = 0.13, and the odds of SGA for smokers are 45/186 = 0.2418. The probability of having an SGA baby for non-smokers is 59/520 = 0.11, and the probability of having an SGA baby for smokers is 45/231 = 0.1948. 

Thus, the odds and probabilities calculated from the regression output and the descriptive statistics are the same. 

c.
 i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a linear regression model of response SGA on predictor NONSMOKER.

The results are the opposite of the previous model, there is a slope of -0.0813, indicating that being a nonsmoker is associated with a 0.0813 decrease in risk of having an SGA baby
. This gave an intercept of 0.1948, indicating a baseline risk of 0.1948 for being a smoker. The confidence interval is the same, except with opposite signs, and the p-value and t statistics are the same. 
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a linear regression model of response NOTSGA on predictor SMOKER.

The results give the opposite slope of the first model, there is a slope of -0.0813, indicating that being a smoker is associated with a 0.0813 decrease in risk of having a not-SGA baby. This gave an intercept of 0.89, indicating a baseline risk having a non-SGA child of 0.89 for being a smoker
. The confidence interval is the same, except with opposite signs, and the p-value and t statistics are the same. 

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

This gave the same slope (0.0813) as the original analysis, SGA on predictor SMOKER. This indicates an increased risk of 0.0813 of having a not SGA baby by being a nonsmoker. The intercept is 0.805, indicated a baseline risk of having a not SGA baby from being a smoker of 0.805. 
The confidence interval, t-statistics and p-value are the same.
4. Repeat problem 2, except consider a statistical regression analysis evaluating an association betw
een the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
a. Methods: A Poisson regression was performed with robust standard errors to examine the association between maternal smoking and SGA. Maternal smoking was the independent variable and SGA was the dependent variable in the regression. A type I error rate of 0.05 is used and 95% confidence interval calculated.

Results: 
A risk ratio of 1.72 was calculated, meaning that for every one-unit change in smoking status
 (i.e., being a smoker instead of a non-smoker), we would see a 72% increase in the risk of having a SGA child. A 95% confidence interval indicates that this observation would not be unusual if the true risk ratio fell between 1.20 and 2.45
. These results were statistically significant (p = 0.003) 
thus we reject the null hypothesis that ratio of probabilities of having an SGA child between smokers and non-smokers was equal to 1. Therefore, we can conclude that there is an association between maternal smoking and increased risk of delivering an SGA infant. 
b. 
The Poisson regression output gives a linear equation of SGA = 0.5405362x – 2.176291, with x being smoking status. For non-smokers, the risk (or probability) of SGA is exp(-2.176291) = 0.113. For smokers, the risk of SGA is 0.1948. From the probability, we can calculated the odds using odds = p/(1-p). So for non-smokers, the odds of having an SGA child are 0.113/(1-0.113) = 0.12798. For smokers, the odds of having an SGA child are 0.1948/(1-0.1948) = 0.2419. 

Based on the descriptive statistics (using the number of subjects in each group for both SGA outcome and smoking status) the odds of SGA for non-smokers are 59/461 = 0.13, and the odds of SGA for smokers are 45/186 = 0.2418. The probability of having an SGA baby for non-smokers is 59/520 = 0.11, and the probability of having an SGA baby for smokers is 45/231 = 0.1948. 

Thus, the odds and probabilities calculated from the regression output and the descriptive statistics are the same. 

c. i. 
You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a linear regression model of response SGA on predictor NONSMOKER.

Here, the coefficients are the same but with opposite signs. Exponentiating them gives a slope of 0.5824, indicating a 41.76% decrease in risk of having an SGA child associated with being a nonsmoker versus a smoker. The intercept is 0.1948, indicated a baseline risk of SGA 0.1948 associated with being a smoker. This decrease would not be surprising if the true risk ratio fell between 0.4080 and 0.8314. These results have the same p value (0.03) and same z statistic. 
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a linear regression model of response NOTSGA on predictor SMOKER.

Here, a coefficient of -0.0962 was exponentiated to give a relative risk of 0.91. This indicates a risk decrease of 9% of having a NOT-SGA child associated with being a smoker. This result would not be surprising if the true risk ratio fell between 0.85 and 0.98. The intercept was –0.12, meaning there is a baseline risk of exp(-.2166) =  0.88 of not SGA associated with being a non-smoker. These results have a p value of 0.007 and z statistic of -2.67. There results are different from any of the other ones- they are not interpretable as inverse, negative, etc. of the other models. 

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

This gave the coefficient as the last analysis, NOTSGA on predictor SMOKER. This indicates a risk decrease of 9% of having a NOT-SGA child associated with being a smoker. This result would not be surprising if the true risk ratio fell between 0.85 and 0.98. The intercept was –0.12, meaning there is a baseline risk of exp(-.2166) =  0.88 of not SGA associated with being a non-smoker. These results have a p value of 0.007 and z statistic of -2.67. These results are all the same as for part ii. However, the intercept of -0.3129 can is different from the last problem, meaning there is a baseline risk of exp(-0.3129) = 0.73 baseline risk of not SGA from a result of being a smoker (nonsmoker = 0). 
5. H
ow do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two-sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?
Problem 2 gave an odds ratio, which would have compared to a Cochran Mantel-Haenszel method in 517. Performing this on STATA gives an odds ratio of 1.89, which was the same as in problem 2 using the logistic regression. The 95% confidence interval and p-value were the same as in problem 2 as well. 
Problem 3 gave a risk difference, which would have compared to a two-sample t-test. A two-sample t-test done on SGA by smoking status with the assumption of unequal variances gives a mean difference in risk of -0.0813, indicating a decrease in risk of SGA of 0.0813 associated with being a non-smoker versus being a smoker. The 95% confidence interval indicates that the results would not be unusual if the true risk difference fell between 0.023 and 0.14. This confidence interval was slightly larger than for the linear regression model results. A two-sided p-value of 0.006 means that we not reject the null hypothesis for a difference in SGA risk between smoking and non-smoking groups. 
Problem 4 gave a risk ratio, which would have compared to a Cochran Mantel-Haenszel method in 517. Performing this on STATA gives a risk ratio of 1.72, which was the same as in problem 4. The confidence interval and p-value were also the same as in Problem 4. 
6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. E
valuate associations using risk difference (RD: difference in probabilities).

Methods: A linear regression using robust standard errors was performed to examine the relationship between maternal age and SGA infants. The regression was done using maternal age as the independent variable and SGA as the dependent variable. A type I error rate of 0.05 was set. 95% confidence intervals were calculated. 
There was no missing data on SGA or maternal age.  
Results: A one-year increase in maternal age was associated with a 0.0045 decrease in risk of delivering an SGA infant. These results would not be surprising if the true risk decrease associated with a one-year increase in age fell between 0.0098 and 0.0002. 
The results were statistically significant (two-sided p = 0.036) and thus we reject the null hypothesis that there is no change in risk of delivering an SGA infant associated with maternal age. Therefore, we can conclude that there is an association with maternal age and decreased risk of delivering an SGA infant.
b. E
valuate associations between risk ratio (RR: ratios of probabilities).
Methods: A Poisson regression using robust standard errors was performed to examine the relationship between maternal age and SGA infants. The regression was done using maternal age as the independent variable and SGA as the dependent variable. A type I error rate of 0.05 was set. 95% confidence intervals were calculated. 
There was no missing data on SGA or maternal age.  

Results: A 3.4% decrease in risk was associated with a one-year increase in maternal age. These results would not be surprising if the true risk ratio fell between 0.934 and 0.999
. These results are statistically significant, with a p-value of 0.046, thus we reject the null hypothesis that there the risk ratio associated with different maternal ages is 1
. Therefore, we can conclude that there is an association with maternal age and decreased risk of delivering an SGA infant.
c. Eva
luate associations using odds ratio (OR: ratios of odds)
Methods: A logistic regression using robust standard errors was performed to examine the relationship between maternal age and SGA infants. The regression was done using maternal age as the independent variable and SGA as the dependent variable. A type I error rate of 0.05 was set. 95% confidence intervals were calculated. There was no missing data on SGA or maternal age.  

Results: An odds ratio of 0.96 was associated with a one-year increase in maternal age. These results would not be surprising if the true odds ratio fell between 0.92 and 0.99. These results are statistically significant, with a p-value of 0.046, thus we reject the null hypothesis that there is no difference in odds of delivery of an SGA infant associated with maternal age.

d. Using
 the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds. Therefore, we can conclude that there is an association with maternal age and decreased odds of delivering an SGA infant.
Using linear regression:

The regression gives us a linear equation of SGA = -0.0045152*age + 0.2509966. Plugging in an age of 20 gives us a probability of 0.161 of having an SGA infant.

Using the Poisson regression;

This regression gives us a linear equation of log SGA = -0.0344235*age – 1.135976. Plugging in an age of 20 and then exponentiating the result gives us a probability of 0.161 of having an SGA infant.

Using the logistic regression:

This regression gives us a linear equation of log odds SGA = -0.0397786*age -0.8531571. Plugging in an age of 20 and then exponentiating the result gives us odds of 0.192 of having an SGA infant. Plugging in the odds into the formula probability = odds/(1+odds) gives us a probability of 0.161 of having an SGA infant.
The sample proportion of SGA infants among 20 year olds is 0.075, or 7.5%, and thus lower than the predicted proportions given by each of the regressions.

7. Pr
oduce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)

a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
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In this graph, the fitted values from the regressions are not expressed for maternal age 20. The plot reflects a sample proportion of 0.075. 

b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
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Fitted SGA proportional values from Linear Regression by Maternal Age











This plot, based on the linear regression, fits the general slope of the data but doesn’t look much like the overall distribution. There is much more variability in the actual data set. There is a larger range in sample proportion from the actual data. 

ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.
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Fitted SGA Proportional Values (Poisson), by Maternal Age











This plot, based on the Poisson regression, fits the general slope of the data but doesn’t look much like the overall distribution. There is much more variability in the actual data set. There is a larger range in sample proportion from the actual data.

iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
[image: image4.emf]


.0
5



.1
.1



5
.2



Pr
ob



ab
ilit



y 
of



 D
el



iv
er



y 
of



 a
n 



SG
A 



In
fa



nt



10 20 30 40 50
Maternal Age (Years)



Fitted SGA Proportions Predicted by Logistic Regression, by Maternal Age











This plot, based on the logistic regression, fits the general slope of the data but doesn’t look much like the overall distribution. There is much more variability in the actual data set. There is a larger range in sample proportion from the actual data. The three models all resemble each other pretty closely but not exactly the actual data set scatterplot.


8. P
erform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Methods: A logistic regression using robust standard errors was performed to examine the relationship between log transformed maternal age and SGA infants. The regression was done using log transformed maternal age as the independent variable and SGA as the dependent variable. A type I error rate of 0.05 was set. 95% confidence intervals were calculated. There was no missing data on SGA or maternal age.  

Results: An odds ratio of 0.39 was associated with 2.718 fold-increase in maternal age. These results would not be surprising if the true odds ratio fell between 0.15 and 1.01. These results are not statistically significant, with a p-value of 0.052, thus we cannot reject the null hypothesis that there is no difference in odds of delivery of an SGA infant associated with log transformed maternal age.

b. W
hy might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
Age is generally not described on a multiplicative scale, so it probably is silly to have this analysis performed on log transformed age data. In this case, because we’re interested in looking at absolute differences in age and their effect on SGA infant risk, looking at linear maternal age data is more appropriate. 

�Total grade: 95/160


�7/10


�This information should be included in the results section rather than methods section, and just stating how you handled missing in your data is enough in the methods section. 


Regarding your statement “… 0 subjects …”. It is enough to say something like “individuals had complete data on height, maternal age and number of previous deliveries”. (-1)


�Sometimes their proportion is also listed, even though you have the 650 group that were not SGA. (-1)


�What about effect modification?  How do you assess the validity of your assumption for effect modification?


You need a second table that shows the


Stratum specific (by age or sex) to show effect modification  (-1)


�Requires title





This footnote is not referring to anything in the table (�the astrix is missing from the table ) 


Also missing value counts need to be reported in the table


�Total = 4/10


�What type of statistic was derived in your analysis? The Wald statistic? -2


�This statement should be listed in results section


�You should remind your reader how many of your subjects were SGA and non-SGA (-1)


�We want to interpret this as the odds of having SGA infants for smokers is 89% higher than non-smokers. (-1)


�The interpretation of your confidence interval is simple and does not align with how we ought to interpret CI in this class (-1)


�No mention of which type of p-value used (-1)


�5/5


�6/10





Overall does these re-parametrizations change our scientific conclusion about the association between smoking and SGA?


�The only thing that changes is the interpretation of the regression parameters. The fitted values will agree for all models, so the CI and the estimate don’t change. You may mean to say “reciprocal” when you said “inverse” but that is true when expressed in log odds scale. The odds intercept will be the reciprocal of the product of the intercept and slope from the reference model. 


(-3)


�Different but how so. Again, “inverse” in what scale?


(-1)


�What about the log odds for the intercept?  


�3/10


�SGA is your outcome, so I would state “The association between SGA and maternal smoking”


�What type of summary measure are you doing? Difference in probabilities?


What test statistic are you looking at? The Wald?


How are you handling the 4 missing subjects in your analyses?


(-3)


�You haven’t described your population in at least one sentence.


(-1)


Formal interpretation required: “The probability of SGA infants is estimated to be an absolute 0.081 higher among smokers than it is among nonsmokers.


(-2)


Your concluding statement should precisely compare smokers to non-smokers. So,  “…no difference in risk of having SGA child between smokers and non-smokers.”


(-1)





�2/5


�Critical issue: No mention of why the corresponding fitted values from the regression have to agree exactly. This is because we are fitting a saturated linear regression model. Saturated model estimates agree with the sample estimates.


(-3)


�7/10


�This is not an accurate interpretation of the slope. The probability of having an SGA baby is 0.0813 for non-smokers. 


(-1)


�Again, the same in clarifying your interpretation of the estimates (probabilities) (-1)


�Again, the same  issue in clarifying your interpretation of the estimates (probabilities) (-1)


�4/10


�You haven’t identified what summary measure you plan to obtain, for example, your summary measure could be ratio comparing the probability of SGA among smoking mothers to the probability of SGA among non-smoking mothers. 


(-1)


You haven’t stated what type of test statistic you are going to look at, Wald based ?


(-1)


You haven’t addressed how you plan to handle missings in your data.





��You haven’t introduced readers about your population sample by SGA and smoking status, how many had SGA and how many did not have SGA babies. (-1)





�We are not interested in one unit increase when we speak about a binary variable, I am taking 1 point off for lack of accuracy in interpretation here (-1)


�Interpretation of your CI should include comparison between smokers and nonsmokers. So, a 95% confidence interval suggests that the observed data is consistent with a true risk ratio such that the probability of SGA is anywhere between 1.20 to 2.45 times higher among smokers than non-smokers. (-1)


�No mention of what type of p-value it is. 


�2/5


�Critical issue: No mention of why the corresponding fitted values from the regression have to agree exactly. This is because we are fitting a saturated Poisson regression model. Saturated model estimates agree with the sample estimates.


(-3) 


�Comparison should be emphasized based on probability or ratio of the probabilities (Risk ratio)


Need to talk about how risk ratio helps us deal with low probabilities. 


7/10


�10/10


�7/10


�Not a complete methods summary for the same reasons as before, no more points taken off as I have taken points off several times above. 


�For 1 year difference in age gives very small summary measures that are less meaningful. Summary measures should be expressed for 5-year 10-year etc difference in age to get scientifically meaningful differences in means.  


�4/10


�Not a complete methods summary for the same reasons as before, no more points taken off 


�Your summary measure was expressed in percent but your confidence interval is not. Incorrectly/incompletely stated confidence interval interpretation. 


-4


�Should not be stated this way. You reject the null hypothesis that says the risk ratio is equal to 1, and thus you conclude that there is an association between SGA and maternal age. I am taking 2 points off for clarity


(-2)


�5/10


�No points taken for the following reasons, because I took points off already previously for the same reasons:


No mention of the type of summary measure you plant to use.


No mention of the type of statistic being derived





�You did not describe your population


Your computed an odds ratio estimate and p-values are not correct, check your stata output. 


(-5). 


Interpretation should be: when comparing groups who differed in age, the odds of SGA infants is estimated to be _% lower for each 1 year difference in age, with the older women having lower risk of SGA.


�8/10


�You stated “…lower than the predicted proportions …” but, you haven’t commented if there is decreased odds of delivering an SGA infant. 


(-2)


�4/10


�All three fitted plots need to be in one figure for comparison (same X and Y axis)


(-3)








�A vague interpretation of the plot. This plot displays sample proportion by age.


(-1)


�


�The poisson and linear regression models produce similar fitted values because there is relatively low probability of SGA


(-2)


�6/10


�No mention of what summary measure you would be using. (odds ratio?)


No mention of what type of statistic used (Wald?)


No mention of assessment of your missing data. 


�We need to know how many subjects you analyzed, and how many had SGA baby and how many did not. 





The odds ratio should be 0.679. Your interpretation of the results is not accurate. 


(-4)


�4/5


�Also, how well do you think log transformed or untransformed function is approximated by a straight line? I am taking 1 point off for not evaluating your argument based on approximation to a true straight line (-1)





