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Biost 518: Applied Biostatistics II
Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3

January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide
 suitable descriptive statistics relevant to this analysis.

Methods: The irrelevant variable in the data set was mother’s study ID (mcode), so I made descriptive statistics for all other variables except this one. I created two indicator variables for the sex of babies and the smoking status of mothers and used “sga” as the already existing indicator variable for small for gestational age. I then created a table for the descriptive statistics. The descriptive statistics were presented within groups defined by the indicator variables of “sga”. For each group I included the mean, standard deviation, minimum and maximum (in the format “mean (sd; min-max)”) for continuous variables (ht, age, parity, bweight and gesage), and I presented percentages and odds of being (not) small for gestational age (in the format “percentage; odds
”) for indicator variables (smoker, sex). There were no missing values for “sga”. Subjects missing data for any other variable were excluded only from the analyses involving those variables. 
Results
: Among all 755 subjects we have for this study, 6 had missing value sin height, 4 had missing values in smoking status, 5 had missing data for gestational age at delivery, 4 had missing data for baby sex and 4 for missing data for baby weights. When I calculated the descriptive statistics for each case
, I excluded the missing data for the corresponding group. As the tables show, subjects with babies small for gestational age had lower average height, lower average age, lower average babies’ birth weight, lower gestational age at delivery, lower average number of prior deliveries, were more likely to be smokers and were more likely to give birth to girls. The odds of delivering sga infants was higher in smoker-group (0.2419) than in non-smoker group (0.128). The odds of delivering sga infants was lower for the boy babies group (0.1298) compared to the girl babies group (0.1948). 
[image: image1.emf]Small for gestational age (n=105) Not small for gestational age (n=650) Overall (n=755)

height (cm) 154.6 (5.87; 142-172) 157.0 (6.54; 106-176) 156.7 (6.50; 106-176)

mother's age (years) 23.8 (4.90; 16-35) 24.9 (5.45; 14-43) 24.8 (5.39; 14-43)

birthweight (gms) 2231.1 (411.6; 1035-3780) 3246.2 (402.13; 2510-4730) 3105.6 (534.5; 1035-4730)

gestational age at delivery (weeks) 37.9 (2.20; 30-42) 39.4 (1.24; 38-44) 39.2 (1.50; 30-44)

number of prior deliveries 0.90 (1.11; 0-6) 1.13 (1.23; 0-6) 1.10 (1.21; 0-6)

smoker(n=231) 43.3%; 0.2419 28.7%; 4.133 30.80%

non-smoker(n=520) 56.7%; 0.1280 71.3%; 7.814 69.20%

boy(n=383) 42.3%; 0.1298 52.4%; 7.705 51%

girl(n=368) 57.7%; 0.1948 47.6%; 5.133 49%


[image: image2.emf]Small for gestational age (n=104) Not small for gestational age (n=647) odds(sga=1|smoker) P(sga=1|smoker)

Smoker(n=231) 45 186 0.2419 0.195

non-smoker(n=520) 59 461 0.128 0.1135

Odds(smoker=1|sga) 0.7627 0.4035 odds ratio=1.89

P(smoker=1|sga) 0.433 0.287


[image: image3.emf]Small for gestational age (n=104) Not small for gestational age (n=647) odds(sga=1|sex) P(sga=1|sex)

boy(n=383) 44 339 0.1298 0.115

girl(n=368) 60 308 0.1948 0.163

Odds(boy|sga) 0.7333 1.101 odds ratio=0.666

P(boy|sga) 0.423 0.524


2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give
 full inference regarding the association between SGA and maternal smoking. 

Methods: I used logistic regression model to compare the odds of delivery of infants who were small for gestational age between subjects who had maternal smoking behavior and subjects who did not have maternal smoking behavior. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and its standard error
. The regression parameter estimates were approximately normally distributed for logistic regression. By exponentiating the estimates, we could get the inference for odds. All the subjects with missing values in “sga” or “smoker” were excluded from our analysis.
Results: Among 231 subjects who had maternal smoking behavior, the odds of delivering of infants who were small for gestational age was 0.2419; among 520 subjects who had did not have maternal smoking behavior, the odds of delivering of infants who were small for gestational age was 0.1280. Based on the 95% CI, the observed odds ratio 1.89 would not be unusual if the true population odds ratio falls in between 1.236 and 2.891. The two-sided p value was 0.00336<0.05, indicating that the test was statistically significant and we can reject the null hypothesis at significance level 0.05 that the odds of delivering of infants who were small for gestational age are not associated with maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

The estimated 
odds of delivering a SGA infant for smokers was 0.2419, and the estimated probability was calculated by the formula prob = odds / (1+odds) = 0.2419 / 1.2419 = 0.195. The estimated odds of delivering a SGA infant for non-smokers was 0.1280, and the estimated probability was calculated by the formula prob = odds / (1+odds) = 0.1280 / 1.1280 = 0.1135. These estimates agreed with the simple descriptive statistics I have reported in problem 1. The reason is because this was a saturated logistic regression model. So the estimated odds will agree exactly with the sample odds. 
c. There
 were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

The intercept 
of the original logistic regression model was a_0, and the slope was a_1. If we fit a logistic regression model of SGA on non-smoker, then the intercept will become b_0 = (a_0+a_1), and the slope will be b_1 = -a_1. The model will still be saturated.  The odds ratio will be the reciprocal of the original odds ratio.
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

Suppose
 the new estimates were c_0 for intercept and c_1 for slope, and the original estimates were still a_0 and a_1. Then c_0 will be -a_0, c_1 will be - a_1. The model will still be saturated. 
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Suppose 
the new estimates were d_0 for intercept and d_1 for slope, and the original estimates were still a_0 and a_1, the estimates in part (ii) were c_0 and c_1. Then d_0 = (c_0+c_1) = (-a_0 – a_1), and d_1 = (-c_1) = a_1. The model will still be saturated.  
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
a. Give full inference regarding the association between SGA and maternal smoking. 

Methods: The probabilities of delivery of SGA infants were compared across smoking groups. I used linear regression model allowing heteroscedesticity to compare the difference in probabilities of delivery of infants who were small for gestational age between subjects who had maternal smoking behavior and subjects who did not have maternal smoking behavior. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and I used the Huber-White sandwich estimator to estimate its standard error. The regression parameter estimates were approximately normally distributed for linear regression
. All the subjects with missing values in “sga” or “smoker” were excluded from our analysis.
Results
: Among 231 subjects who had maternal smoking behavior, the probability of delivering of infants who were small for gestational age was 19.48%; among 520 subjects who had did not have maternal smoking behavior, the probability of delivering of infants who were small for gestational age was 11.35%. Based on the 95% CI, the observed difference in probabilities 8.13% higher in the smoker group compared to non-smoker group would not be unusual if the true absolute difference in probabilities falls in between 2.33% higher in smoker group and 13.94% higher in smoker group than the non-smoker group. The two-sided p value was 0.0061<0.05, indicating that the test was statistically significant and we can reject the null hypothesis at significance level 0.05 that the difference in probabilities of delivering of infants who were small for gestational age are not associated with maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

The estimated 
probability of delivering a SGA infant for smokers was 19.48%, and the estimated odd was 0.1948/(1-0.1948) = 0.2419. The estimated probability of delivering a SGA infant for non-smokers was 11.35% and the estimated odd was 0.1135/(1-0.1135)=0.128. These estimates agreed with the simple descriptive statistics I have reported in problem 1. The reason is because this was a saturated linear regression model again; we had two parameters and two groups. So the estimated odds and probabilities will agree exactly with the sample odds and probabilities. 
c. There
 were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a linear regression model of response SGA on predictor NONSMOKER.

Assume
 the intercept of the original linear regression model was a_0, and the slope was a_1. If we fit a logistic regression model of SGA on non-smoker, then the intercept will become b_0 = (a_0+a_1), and the slope will be b_1 = -a_1. The model will still be saturated. 
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a linear regression model of response NOTSGA on predictor SMOKER.

Suppose
 the new estimates were c_0 for intercept and c_1 for slope, and the original estimates were still a_0 and a_1. Then c_0 will be 1-a_0, c_1 will be -a_1. The model will still be saturated. 
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

Suppose
 the new estimates were d_0 for intercept and d_1 for slope, and the original estimates were still a_0 and a_1, the estimates in part (ii) were c_0 and c_1. Then d_0 = (c_0+c_1) = (1 - a_0 – a_1), and d_1 = (-c_1) = a_1. The model will still be saturated.  
4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
a. Give full inference regarding the association between SGA and maternal smoking. 

Methods:
 I used Poisson regression model to compare the probabilities of delivery of infants who were small for gestational age between subjects who had maternal smoking behavior and subjects who did not have maternal smoking behavior. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and I used the Huber-White sandwich estimator to estimate its standard error. The regression parameter estimates were approximately normally distributed for Poisson regression
. Then I exponentiated the estimates to get the inference for ratio of probabilities
. All the subjects with missing values in “sga” or “smoker” were excluded from our analysis.
Results: Among 231 subjects who had maternal smoking behavior, the proportion of delivering of infants who were small for gestational age was 0.1948; among 520 subjects who had did not have maternal smoking behavior, the proportion of delivering of infants who were small for gestational age was 0.1135. Based on the 95% CI, the observed ratio in probabilities 1.717 suggesting 71.7% higher in the estimated probability for smoker group compared to non-smoker group would not be unusual if the true ratio in probabilities falls in between 1.202 (suggesting 20.2% higher in the estimated probability for smoker group) and 2.453 (suggesting 145.3% higher in smoker group than the non-smoker group). The two-sided p value was 0.00302<0.05, indicating that we can reject the null hypothesis at significance level 0.05 that the ratio of probabilities of delivering of infants who were small for gestational age is not associated with maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

The estimated 
probabilities of delivering a SGA infant for smokers was 19.48%, and the estimated odd was 0.1948/(1-0.1948) = 0.2419. The estimated probability of delivering a SGA infant for non-smokers was 11.35% and the estimated odd was 0.1135/(1-0.1135)=0.128. These estimates agreed with the simple descriptive statistics I have reported in problem 1. The reason is because this was a saturated Poisson regression model again; we had two parameters and two groups. So the estimated odds and probabilities will agree exactly with the sample odds and probabilities. 
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You
 create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a Poisson regression model of response SGA on predictor NONSMOKER.

Assume the intercept of the original Poisson regression model
 was a_0, and the slope was a_1. If we fit a logistic regression model of SGA on non-smoker, then the intercept will become b_0 = (a_0+a_1), and the slope will be b_1 = -a_1. The model will still be saturated. 
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a Poisson regression model of response NOTSGA on predictor SMOKER.

Suppose
 the new estimates were c_0 for intercept and c_1 for slope, and the original estimates were still a_0 and a_1. Then exp(c_0) = 1-exp(a_0), and exp(c_0+c_1) = 1 - exp(a_0 + a_1). The model will still be saturated. 
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. Suppose
 the new estimates were d_0 for intercept and d_1 for slope, and the original estimates were still a_0 and a_1, the estimates in part (ii) were c_0 and c_1. Then exp(d_0) = 1 - exp(a_0+a_1)
, and exp(d_1) = (1- exp(a_0)) / (1- exp(a_0 + a_1))
. The model will still be saturated.  
5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?

Methods:
 I used two-sample t-test allowing unequal variances (Satterthwaite approximation) to test difference in the mean (i.e. the proportion) of delivery of infants who were small for gestational age between subjects who had maternal smoking behavior and subjects who did not have maternal smoking behavior.  All the subjects with missing values in “sga” or “smoker” were excluded from our analysis. The two-sided p-value. 95% CI for the difference in population means were calculated based on the assumption of allowing unequal variances.
Results: Among 231 subjects who had maternal smoking behavior, the proportion of delivering of infants who were small for gestational age was 0.1948; among 520 subjects who had did not have maternal smoking behavior, the proportion of delivering of infants who were small for gestational age was 0.1135. Based on the 95% CI, the observed difference in proportion 0.0813 higher in the smoker group compared to non-smoker group would not be unusual if the true absolute difference in probabilities falls in between 0.0231 higher in smoker group and 0.1395 higher in smoker group than the non-smoker group. The two-sided p value was 0.00628<0.05, indicating that the test was statistically significant and we can reject the null hypothesis at significance level 0.05 that the difference in proportions of delivering of infants who were small for gestational age are not associated with maternal smoking.
Comparisons: The two-sample t-test allowing unequal variances gave exactly same estimates for parameters as the linear regression assuming heteroscedasticity in Problem 3 did. But we should notice that the two-side p-value of t-test (0.00628) was slightly different from the p-value in Problem 3 (0.0061), and the 95% CI from t-test was also slightly different from the 95% CI in Problem 3. These were due to the handling of the sample sizes and the degrees of freedom for small sample. The differences would be negligible when the sample size is very large. By using estimates from t-test, we could calculate and get the exactly same estimates for odds and ratio of probabilities that were estimated in Problem 2 and Problem 4. 
6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate
 associations using risk difference (RD: difference in probabilities).

Methods: The probabilities of delivery of SGA infants were compared across groups defined by the continuous measure of maternal age. I used linear regression model allowing heteroscedesticity to compare the difference in probabilities of delivery of SGA infants. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and I used the Huber-White sandwich estimator to estimate its standard error. The regression parameter estimates were approximately normally distributed for linear regression. All the subjects with missing values in “sga” or “age” were excluded from our analysis.
Results: There were no missing value for “sga” or “age”. Among total 755 subjects, there were 105 subjects with SGA infants and 650 subjects with no SGA infants. The estimated absolute difference in the probability of delivering SGA infants was 0.00452 lower for 1 year
 increase in age.  Based on 95% CI, the observed difference would not be unusual if the true difference falls in between 0.00875 lower for 1 year increase in age and 0.000286 lower for 1 year increase in age. The two-sided p-value is 0.0364, so this observation was statistically significant at a 0.05 level of significance. Therefore we reject the null hypothesis that the probability for SGA is not associated with the maternal age.
b. Evaluate associations between risk ratio (RR: ratios of probabilities).
Methods
: I used Poisson regression model to compare the probabilities of delivery of infants who were small for gestational age across groups defined by the continuous measure of maternal age. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and I used the Huber-White sandwich estimator to estimate its standard error. The regression parameter estimates were approximately normally distributed for Poisson regression. Then I exponentiated the estimates to get the inference for ratio of probabilities. All the subjects with missing values in “sga” or “age” were excluded from our analysis.
Results: There were no missing value for “sga” or “age”. Among total 755 subjects, there were 105 subjects with SGA infants and 650 subjects with no SGA infants. The observed ratio of probabilities was 0.966 suggesting a decrease in 3.38% in probability for 1 year 
increase in age. Based on the 95% CI, this observed ratio would not be judged as unusual if the true ratio falls in between 6.6% lower in probability for 1 year increase in age and 0.053% lower in probability for 1 year increase in age. The two-side p value was 0.04653 < 0.05, indicating that the test was statistically significant at 0.05 level of significance. So we can reject the null hypothesis that the probability for SGA is not associated with the maternal age.
c. Evaluate associations using odds ratio (OR: ratios of odds)

Methods:
 I used logistic regression model to compare the odds of delivery of infants who were small for gestational age across the groups defined by the continuous measure of age. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and its standard error. The regression parameter estimates were approximately normally distributed for logistic regression. By exponentiating the estimates, we could get the inference for odds. All the subjects with missing values in “sga” or “age” were excluded from our analysis.
Results: There were no missing value for “sga” or “age”. Among total 755 subjects, there were 105 subjects with SGA infants and 650 subjects with no SGA infants. From the logistic regression, we estimated that the odds of having SGA infants was a relative 3.39% lower for each 1 year increase in age (odds ratio was 0.961)
. Based on the 95% CI, the observed odds ratio would not be unusual if the true odds ratio falls in between a relative 7.58% lower for each 1 year increase in age and a relative 0.069% lower for each 1 year increase in age. The two-side p-value was 0.0461<0.05, indicating that the test was statistically significant at 0.05 level of significance. Therefore we can reject the null hypothesis that the probability for SGA is not associated with the maternal age.
d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

For (a):
 the estimated probability that a 20 year old mother would have a SGA infant is 16.07%

For (b): the estimated probability that a 20 year old mother would have a SGA infant is 16.13%
For (c): the estimated probability that a 20 year old mother would have a SGA infant is 16.13

The sample proportion of SGA infants among 20 years olds is 0.075=7.5%. The estimates are all much higher than the sample proportion. The reason is that age is a continuous variable, and our model only has two parameters, which means that this model is not saturated. When we were fitting the model, we need to borrow information. Thus we expect the estimate proportion to be not the same as the sample proportion.
7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
The plot is shown below. 
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b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
The plot of estimated probabilities of SGA by age derived from linear regression is presented (the linear line). Sample proportions within each unique age are also superimposed.
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ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.

The plot of estimated probabilities of SGA by age derived from Poisson regression is presented (the red curve). Sample proportions within each unique age are also superimposed.
[image: image6.png]Estiamted probability of SGA (Poisson Regression)

estimated probability of SGA

15 20 25 30 35 40

age(years)




iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
The plot of estimated probabilities of SGA by age derived from logistic regression is presented (the green curve). Sample proportions within each unique age are also superimposed.
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Comparison:
 The fitted values from linera regression ,poinsson regression and logistic regression across age groups were similar. But they did not quite fit the sample proportions for each age group. This result agrees with our analysis in Problem 6: all the regression models gave around 16.1% for estiamted probability of SGA for a 20-year-old woman, but the sample  proportion for age of 20 was 7.5%.
8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Methods
: First I log transformed maternal age. Then I used logistic regression model to compare the odds of delivery of infants who were small for gestational age across the groups defined by the continuous measure of logarithmically transformed age. The two-sided p value and 95% CI for each parameter estimate were Wald-based estimates computed from the regression slope parameter and its standard error. The regression parameter estimates were approximately normally distributed for logistic regression. By exponentiating the estimates, we could get the inference for odds. All the subjects with missing values in “sga” or “age” were excluded from our analysis.

Results: There were no missing value for “sga” or “age”. Among total 755 subjects, there were 105 subjects with SGA infants and 650 subjects with no SGA infants. From the logistic regression, we estimated that the odds of having SGA infants was a relative 61.5% lower for each 1 unit increase in log age (odds ratio was 0.385). 
Based on the 95% CI, the observed odds ratio would not be unusual if the true odds ratio falls in between a relative 85.33% lower for each 1 unit increase in log age and a relative 1.23% higher for each 1 unit increase in log age. The two-side p-value was 0.053>0.05, indicating that the test was not statistically significant at 0.05 level of significance. Therefore we cannot reject the null hypothesis that the probability for SGA is not associated with the log maternal age.
b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
It might be silly
 to have performed such an analysis. It is not natural to compare ages by ratio instead of difference. The range of age in this data set is from 14 to 43, which may be too narrow to use inference for ratio. And there is no intuition suggesting the log age would result in more linearity. So I would prefer the analysis in problem 6c.
�133


�9/10


� 


�Put titles on your table.


Your table mentions about odds-ratio. They aren’t mentioned on your methods section. 


Table doesn’t respect upper case formatting (eg: Height(cm) instead of height (cm))


OK crossing SGA versus other covariates. But we miss Smoke crossing other covariates.





�Each case? Meaning record or variable?


�9/10


�This is doesn’t sound well. Are you saying the beta two-sided p-values and its 95% Confidence Intervals were computed from the slope parameter and its standard error?


Then that is wrong.


�5. Good answer.


�8/10


�Good!


�Generally OK but you didn’t tell us in which scale this is interpreted: log-odds?


�Again OK. We miss the scale where this model is set.


�Is this an assumption? Or fact of your data? How have you arrived to such conclusion?


�9/10


�5/5


�10/10


�Good!


�Very nice!


�Good!


�9/10


�Why are you saying this?


�Tell us the scale you are measuring. 


We guess from this that you’re in log-prevalence. 


�5/5


�5/10


�In general is OK. But you must state that this is on log-probabilities scale.


�We miss the scale here also. This is not OK.


�Scale of measurement.


�Not OK.


�The division is inverted.


5/10


�OK for the mean difference. But what about the odds-ratio and relative risk?


�9/10


�For EACH 1 year increase


�9/10


�For EACH 1 year


�6/10


�Should be 1 – 0.961 = 3.9%


10/10


�Very well!


�10/10


�5/10


�After doing log transformation on the predictor, the way you interpret changes. It becames a multiplicative interpretation


5/5


�Nice answer.





