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Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3
January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.

METHODS: One of the primary variables of interest is babies who were small for gestational age (SGA). We provide a table with descriptive statistics on SGA (mean = proportion SGA in data), birthweight (mean, standard deviation, min, and max), gestational age (mean, standard deviation, min, and max), smoking behavior (mean = proportion), and mother’s age (mean, standard deviation, min, and max). We also consider preterm babies (born prior to 38 weeks – the mean or proportion of preterm babies is presented) and low birthweight (<2500 grams – the mean or proportion of low birthweight infants is presented). We also believe that smoking affects SGA designation, so we present SGA proportions stratified by mother’s smoking status. 
RESULTS: The relevant descriptive statistics are displayed in Table 1. Of the 755 subjects in the data, there was no missing data on SGA, and 13.91% (or 105 babies) were labeled as small for gestational age. 30.76% of the mothers smoked (four subjects were missing data on smoking status). Mean age for mothers was around 25 years, with a minimum age of 21 and a maximum age of 43. Mean infant birthweight was 3106 grams, with a minimum value of 1035 grams and a maximum value of 4730 grams. Data was missing on four subjects. About 9.9% (75 babies) were identified as low birthweight (<2500 grams). Mean gestational age was 39.18 weeks, with a minimum of 30 and a maximum of 44. 5.2% of babies were categorized as preterm (born prior to 38 weeks). We also consider birthweight stratified by smoking status – we notice that smoking mothers tend to have lower birthweight babies, on average. Of the 235 smoking mothers, the mean birthweight was 2972 grams, compared to 3165 grams in nonsmoking mothers. We also notice that a higher proportion of SGA infants were delivered from mothers who smoked than mothers who did not smoke.
Data was missing uniformly (on smoking status, birthweight, gestational age, and sex) for four subjects. These subjects were excluded from the rest of the analysis.

	
	Table 1: Relevant Summary Measures
	

	SGA
	Count: 755.0; Proportion: 0.1391

	Mother's Smoking Status
	Count: 751.0; Proportion: 0.3076 

	Mother's Age (years)
	Count: 755.0; Mean: 24.79; (SD: 5.386; Min: 14.00, Max: 43.00) 

	Infant birthweight (grams)
	Count: 751.0; Mean: 3106; (SD: 534.5; Min: 1035, Max: 4730)

	Low Birthweight (<2500 g)
	Count: 751.0; Proportion: 0.09987

	Gestational Age (weeks)
	Count: 750.0; Mean: 39.18; (SD: 1.501; Min: 30.00, Max: 44.00) 

	Preterm (<38 weeks)
	Count: 750.0; Proportion: 0.05200 

	Infant birthweight (grams) with Nonsmoking mothers
	Count: 520.0; Mean: 3165; (SD: 533.8; Min: 1035, Max: 4730)

	Infant birthweight (grams) with Smoking Mothers
	Count: 231.0; Mean: 2972; (SD: 512.4; Min: 1410, Max: 4550)

	SGA with Nonsmoking Mothers
	Count: 520.0; Proportion: 0.1135

	SGA with Smoking Mothers
	Count: 231.0; Proportion: 0.1948


2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking. 

METHODS: Logistic regression analysis was performed using robust standard error estimates calculated using the Huber-White method. Four subjects were removed from analysis due to missing values. 95% confidence intervals and p-values were computed, again using the robust standard error estimates. Estimates of the association were based on the ratio of odds of delivering a SGA infant for smoking and nonsmoking mothers.
RESULTS: Of the 520 subjects in the nonsmoking group, the odds of delivering a SGA baby are estimated to be 0.128. Of the 231 subjects in the smoking group, the odds of delivering a SGA baby are estimated to be 0.242. Based on a logistic regression analysis using robust standard error estimates, the odds ratio for delivering a SGA infant for smoking vs nonsmoking mothers is estimated to be 1.89. Thus the odds of delivering an SGA infant are estimated to be 1.89 times higher for smoking mothers than for nonsmoking mothers. A 95% confidence interval suggests that these data would not be surprising if the odds of delivering a SGA infant were between 1.24 and 2.89 times higher for a smoking mother than for a nonsmoking mother. A two-sided p-value of <.05 allows us to reject the null hypothesis that the odds are the same in both groups in favor of the alternative hypothesis that the odds of delivering a SGA infant are higher in the mothers who smoke.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

The regression model estimates the slope to be .6368 and the intercept to be -2.056. Thus the estimated odds of delivering an SGA infant in the nonsmoking group are exp(-2.056) = .128. By definition, then, the probability of delivering a SGA infant is 11.3% for nonsmokers. 

Therefore the odds of delivering an SGA infant in the smoking group are exp(-2.056+.6368) = .242. By definition, then, the probability of delivering a SGA infant is 19.5% for smokers.
These estimates agree almost exactly with the stratified descriptive statistics reported on SGA in problem 1. The similarity is due to the fact that the mean is equal to the proportion of SGA in a group, since it is a binary variable. The difference is simply due to rounding.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

If we had fit a logistic regression model of response SGA on predictor NONSMOKER, then we would have obtained very similar estimates. However, the intercept would now correspond to the odds in the smoking group and the slope would be negative, but the same magnitude. Thus we would obtain the same odds and proportions in each group. The inference would be exactly the same, only now we would be reporting a negative association (because nonsmokers tend to have a lower proportion of SGA babies), which means that the odds ratio would be less than one.
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

If we fit a logistic regression model of response NOTSGA on predictor SMOKER, we would now be estimating 1/odds, if odds is the odds from the original analysis. Notice that the mean of NOTSGA is equal to 1-mean(SGA), or 1-p. Then the odds of a NOTSGA baby are (1-p)/p, which is simply 1/odds. Thus we would see a slope and intercept that are -1 multiplied by their respective quantities from the original regression. The odds that we obtained would be equal to 1/odds from the original regression. Thus the inference now would be based on the odds ratio of not having an SGA baby in the smoking group compared to the nonsmoking group. We would be presenting a negative association (i.e. odds of not having an SGA baby are higher in the nonsmoking group than the smoking group), which means that the odds ratio would be less than one.
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
If we fit regression model of response NOTSGA on predictor NONSMOKER, we are now estimating 1/odds, where the intercept now corresponds to the smoking group. Thus the estimated intercept would be -1*log(.242), and the estimated slope would be the slope from (i). Then we could calculate the odds ratio, and our inference would be the same as in the original model: the odds ratio would be the same.
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
a. METHODS: Linear regression was performed using robust standard error estimates calculated using the Huber-White method. Four subjects were removed due to missing values. 95% confidence intervals and p-values were computed, again using the robust standard error estimates. Estimates of the association were based on the difference in proportions of smoking and nonsmoking mothers who delivered a SGA infant.

RESULTS: Of the 520 subjects in the nonsmoking group, the probability of delivering a SGA baby was estimated to be 0.113. Of the 231 subjects in the smoking group, the probability of delivering a SGA baby was estimated to be 0.195. Based on linear regression analysis using robust standard error estimates, the difference in proportions of SGA infants delivered is 0.081, with the smoking group tending to have the higher proportion. A 95% confidence interval suggests that this data would not be unlikely with a true difference of proportions of SGA babies delivered between 0.023 and 0.14. A two-sided p-value of <0.05 allows us to reject the null hypothesis of equal proportions of SGA babies delivered in each group in favor of the alternative hypothesis, that the proportions are different between the nonsmoking and smoking groups, with the smoking group tending to have the higher proportion of SGA babies delivered.

b. Using the linear regression parameter estimates, we estimate the proportion of SGA babies delivered in the nonsmoking group to be 0.113, and the proportion of SGA babies delivered in the smoking group to be .113+0.08 = 0.195. Therefore we estimate the odds of delivering an SGA baby in the nonsmoking group to be .113/(1-.113) = .128, and the odds of delivering an SGA baby in the smoking group to be .195/(1-.195) = .242. These proportions correspond exactly with the descriptive statistics we provided in problem 1. We did not provide the odds, but they could be calculated from the proportions.
c. We are now fitting three different linear regression models to answer the question.
i. If we now fit a model of SGA on NONSMOKER, then we would obtain very similar estimates to the original model. Now the intercept would be the proportion of SGA babies in the smoking group, and the slope would still be the difference in proportions between the two groups – but the slope would now be negative. The estimated proportion of SGA babies in each group would correspond exactly to the estimated proportions in the original model. The inference would now report a negative association.
ii. If we now fit a model of NONSGA on SMOKER, we would be estimating (1-p), which is simply the opposite probability to that in the original model. Therefore the intercept would now be the proportion of non-SGA babies in the nonsmoking group, which is 1-(proportion of SGA babies in the nonsmoking group). The slope would be the difference in proportions, which is the negative of the slope in the original analysis. When we then find the proportion of SGA babies, these proportions will correspond exactly to the proportions in the original model. The inference will report a negative association.
iii. If we now fit a model of NONSGA on NONSMOKER, we are now estimating (1-p) with the intercept corresponding to the smoking group. Thus the intercept would be 1-(proportion SGA in smoking group), from the original model, and the slope would again be positive – the nonsmoking group has a higher proportion of non-SGA babies. 
4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
a. METHODS: We fit a Poisson regression model using robust standard error estimates calculated using the Huber-White method. Four subjects were removed due to missing values. 95% confidence intervals and p-values were computed, again using the robust standard error estimates. Estimates of the association were based on the ratio of probabilities of delivering a SGA infant across smoking groups.

RESULTS: Of the 520 subjects in the nonsmoking group, the probability of delivering a SGA baby was estimated to be 0.113. Of the 231 subjects in the smoking group, the probability of delivering a SGA baby was estimated to be 0.195. Based on Poisson regression analysis with robust standard error estimates, the ratio of probabilities for SGA across smoking groups is estimated to be 1.71. Thus the smoking group has a probability of delivering a SGA infant 1.71 times that of the nonsmoking group. A 95% confidence interval suggests that this data would not be surprising given a true risk ratio of 1.20 and 2.45 times higher in the smoking group than the nonsmoking group. A two-sided p-value of <0.05 allows us to reject the null hypothesis that the risk ratio is 1 in favor of the alternative hypothesis, that the risk of delivering a SGA baby is higher in the smoking group than the nonsmoking group.
b. Using the Poisson regression parameter estimates, we estimate the probability of delivering a SGA infant in the nonsmoking group to be 0.11 (the intercept in the model). Thus the odds of delivering a SGA infant in the nonsmoking group is 0.128. 
The probability of delivering a SGA infant in the smoking group is given by exp(-.2176+.5405) = .195. Therefore the odds of delivering a SGA infant in the smoking group is 0.242. 

Again, the probabilities are equal to the proportions given in the table in problem 1. The odds can again be calculated directly from these probabilities.

c. We now discuss the other three possible Poisson regression analyses to answer the question of interest.
i. If we fit a Poisson regression model of SGA on NONSMOKER, the intercept in our model would now refer to the smoking group. Thus the intercept would be log(.195), and the slope would be the negative of its value in (a). The confidence interval would change to reflect this fact. All of the other inference would be the same.

ii. If we fit a Poisson regression model of NOTSGA on SMOKER, we now are estimating the relative risk of having a normal baby across smoking groups. Thus the intercept would be the probability of delivering a normal baby in the nonsmoking group, which is 1-(prob of having an SGA baby in the nonsmoking group). The slope would be negative, since there is a higher probability of delivering a normal baby in the nonsmoking group than in the smoking group.

iii. If we fit a Poisson regression model of NOTSGA on NONSMOKER, we are again estimating the relative risk of having a normal baby across smoking groups, but now the intercept corresponds to the probability of delivering a normal baby in the smoking group. Thus the slope would be positive, since the probability of delivering a normal baby is lower in the smoking group than in the nonsmoking group.
5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?

The analyses in problem 2 would compare to the results of a chi-squared test using the odds ratio as the measure of association. The odds estimates in each group and the odds ratio would correspond exactly to the results calculated from a 2x2 table. If we calculated an approximate 95% confidence interval, they would agree exactly. The exact confidence interval would differ slightly. The p-value calculated in the regression using the Wald test would differ slightly from the p-value calculated using the chi-squared test. These similarities are due to the chi-squared test (which corresponds to the score test in logistic regression) being approximated well by the Wald test (used in problem 2) for large sample sizes. The three analyses we performed in (c) would be equivalent to the appropriate three chi-squared tests.
In problem 3, the first analysis would correspond to a t-test for the difference in means, allowing for unequal variances (since the mean is the proportion). However, the null hypothesis would be that the mean in the smoking group minus the mean in the nonsmoking group was equal to zero. The second analysis would also be a t-test for the difference in proportions, only now we would be comparing the proportion of non-SGA infants in each group. The difference in proportions would be positive. In the third analysis, we would be reporting a difference in proportions of non-SGA babies, with the null hypothesis from the first analysis. Thus the difference in proportions is still positive, since we expect a higher proportion of non-SGA babies in the nonsmoking group.

In problem 4, the analyses would compare to the results of a chi-squared test using the risk ratio as the measure of association. The estimates of the probabilities in each group and the risk ratio would correspond exactly to the estimates calculated using a 2x2 table. As above, the approximate 95% confidence interval in the 514/517 test would be equivalent to the 95% confidence interval calculated in the Poisson regression. However, it would differ from an exact confidence interval were one calculated. Similarly, the p-value based on the Wald test (computed in the regression analysis) would differ slightly from the p-value based on the chi-squared test.
6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate associations using risk difference (RD: difference in probabilities).

METHODS: A linear regression model of SGA on maternal age is fitted using robust standard error estimates calculated using the Huber-White method. All of the subjects are used in the analysis. 95% confidence intervals and two-sided p-values are calculated using robust standard error estimates. Estimates of the association between age and SGA are based on the risk difference.

RESULTS: Based on linear regression analysis, the estimated risk difference between two groups 1 year apart in age is estimated to be -4.5x10^-3, or -0.0045. Thus the older group tends to have the lower probability. Based on a 95% confidence interval, these data would not be surprising with a true risk difference between -8.75x10^-3 and -2.86x10^-4, with the older subject tending to have the lower probability. A two-sided p-value of <0.05 allows us to reject the null hypothesis that the risk difference is zero in favor of the alternative, that the risk difference between two groups differing by 1 year in age is negative.
b. Evaluate associations between risk ratio (RR: ratios of probabilities).
METHODS: A Poisson regression model of SGA on maternal age is fitted using robust standard error estimates calculated using the Huber-White method. All of the subjects are used in the analysis. 95% confidence intervals and two-sided p-values are calculated using robust standard error estimates. Estimates of the association between age and SGA are based on the risk ratio.

RESULTS: Based on Poisson regression analysis, the estimated risk ratio between two groups 1 year apart in age is 0.966. Thus the older group tends to have a probability 96.6% of that of the younger group. A 95% confidence interval suggests that this data would not be surprising with a true risk ratio between .934 and .999 – that is, if the probability of delivering a SGA baby was between 93.4% and 99.9% of the probability in the younger group. A two-sided p-value of 0.046 allows us to reject the null hypothesis that the risk ratio is 1 in favor of the alternative, that the risk ratio between two groups differing by 1 year in age is less than 1. 
c. Evaluate associations using odds ratio (OR: ratios of odds)

METHODS: A logistic regression model of SGA on maternal age is fitted using robust standard error estimates calculated using the Huber-White method. All of the subjects are used in the analysis. 95% confidence intervals and two-sided p-values are calculated using robust standard error estimates. Estimates of the association between age and SGA are based on the odds ratio.

RESULTS: Based on logistic regression analysis, the estimated odds ratio between two groups 1 year apart in age is 0.96. Thus the older group tends to have odds 96% that of the younger group. A 95% confidence interval suggests that these data would not be surprising if the odds in the older group were truly between 92% and 99% of the odds in the younger group. A two-sided p-value of 0.461 allows us to reject the null hypothesis that the odds ratio is 1 in favor of the alternative hypothesis, that the odds ratio between groups differing by 1 year in age is less than 1.
d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

The sample proportion of SGA infants among the 40 20 year olds in the data set is 7.5%. 
Using the linear regression parameter estimates, the probability that a 20 year old mother would have a SGA infant is 0.251-4.515x10^-3*(20) = 0.1607, or 16.1%. This difference is due to “borrowing” information from the other nearby age groups to create the least squares line. 
Using the logistic regression parameter estimates, the odds that a 20 year old mother would have a SGA infant are .192, so the probability is 16.1%. Again, this difference is due to “borrowing” information from nearby age groups to create the line.

Using Poisson regression parameter estimates, the probability that a 20 year old mother would have a SGA infant is 16.1%. This difference from the sample proportion is, again, due to “borrowing” information.
7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
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In this case, notice that the proportion for 20 year olds is 7.5%, as expected when we calculated the mean for each unique age.
b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
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This plot shows the predicted values for each age. Notice that the predicted value on the line (at age 20, for instance) corresponds exactly to the estimate we got in problem 6 (16.1%).
ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.
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Notice that we again get the estimate that we got in problem 6.
iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
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If we plot the proportion (using odds/(1+odds)) vs age, we again see that we recover our estimates from the logistic regression that we performed in 6.
8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

METHODS: Logistic regression analysis of SGA on log base 2 maternal age is performed, using robust standard errors calculated using the Huber-White method. 95% confidence intervals and p-values are also computed, using these robust standard error estimates. The association is measured using the odds ratio. 

RESULTS: Based on logistic regression analysis, the odds ratio of having a SGA infant between two age groups differing in age by two years is 0.52, meaning that the odds of having a SGA infant in the older group are 52% of the odds in the younger group. A 95% confidence interval suggests that these data would not be unusual with a true odds ratio between 0.26 and 1.008. This suggests that the data are not surprising if the older age group had odds anywhere between 26% and 100.8% of the odds in the younger group. This, coupled with a p-value of 0.053, lead us to fail to reject the null hypothesis that the odds ratio between two groups differing by two years in age is 1.
b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
It might have been reasonable to perform this analysis if we believed that this analysis could give us a better straight line relationship than the analysis using untransformed age, or that we believed SGA was affected multiplicatively by age. However, we would only do this a priori if we had suspicions that our relationship would be decidedly nonlinear. I also would hesitate to say a priori that the relationship is multiplicative. Thus I would not have performed this analysis rather than the analysis in 6c.

