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1. Methods: Summary analysis of provided variables from the study divided by predictor of interest – smoking status. No variables were predicted to be confounders, so all variables were summarized as was appropriate for continuous, ordered categorical, or Bernoulli. SGA and Male were transformed to Bernoulli variable from binomial variable to better summarize variable. Missing data is noted in the N column for each statistic. Each variable contains some missing data. The entire set has 755 people enrolled and the maximum number of outputs for a variable was 751. 
Inference: Smokers and non-smokers seemed to have very similar distribution across most variables including height, age, parity and sex of baby. Birthweight, gestational age at birth, and SGA (small for gestational age) do appear to be slightly different across smoking groups. SGA occurring 11% of the time for non smokers and 19% in smokers. As SGA is a function of birthweight and gestational age, we see that average birthweigh of babies is higher in non smokers and average gestational age is a fraction of a week longer in non smokers too. 

	 
	variable
	N
	Mean
	SD
	Min
	Max

	Non-Smokers
	Mother's height (cm)
	515
	156.637
	6.157
	127
	175

	
	Mother's age (years)
	520
	24.608
	5.366
	14
	43

	
	Parity
	520
	1.056
	1.185
	0
	6

	
	Birthweight (gms)
	520
	3164.925
	533.848
	1035
	4730

	
	Gestational Age at birth (weeks)
	520
	39.285
	1.548
	30
	44

	
	Male (%)
	520
	52.31%
	0.500
	 
	 

	
	SGA (%)
	520
	11.35%
	0.317
	 
	 

	 
	 
	 
	 
	 
	 
	 

	Smokers
	Mother's height (cm)
	230
	156.804
	7.185
	106
	176

	
	Mother's age (years)
	231
	25.134
	5.351
	15
	42

	
	Parity
	231
	1.195
	1.265
	0
	6

	
	Birthweight (gms)
	231
	2972.160
	512.376
	1410
	4550

	
	Gestational Age at birth (weeks)
	230
	38.957
	1.363
	33
	43

	
	Male (%)
	231
	48.05%
	0.501
	 
	 

	
	SGA (%)
	231
	19.48%
	0.397
	 
	 

	 
	 
	 
	 
	 
	 
	 

	Total
	Mother's height (cm)
	745
	156.689
	6.488
	106
	176

	
	Mother's age (years)
	751
	24.770
	5.363
	14
	43

	
	Parity
	751
	1.099
	1.211
	0
	6

	
	Birthweight (gms)
	751
	3105.632
	534.462
	1035
	4730

	
	Gestational Age at birth (weeks)
	750
	39.184
	1.501
	30
	44

	
	Male (%)
	751
	51.00%
	0.500
	 
	 

	
	SGA (%)
	751
	13.85%
	0.346
	 
	 


2. A. Methods: The odds of delivery of infants who were small for gestational age (SGA) were compared by mother’s reported smoking (either smoker or non-smoker) using the logistic regression analysis. The two sided p value and 95% CI were calculated using the Wald based estimates. The model is saturated and the sample size is large enough to assume that the distribution is approximately normal. Missing data was removed for this analysis.
Inference: Of the 751 mothers that had reported smoking and SGA values, the odds of a non-smoking mother who had a SGA infant was 0.128. The odds of a smoking mother who had an SGA infant was 0.242. The odds of SGA is 89.04% higher for the smoking group. With 95% confidence we would expect the true population odds ratio to be between 23.75% to 189% higher odds of seeing a SGA birth with the smoking group versus the non smoking group. The two sided p value is 0.0037, and with our chosen significance level of 0.05 we can reject the null hypothesis that the odds are not associated with smoking in favor of the alternative that there is an association between SGA and smoking. 
B. The odds of SGA for smokers is 0.242 and the probability is 19.48%

The odds of SGA for non smokers is 0.128 and the probability is 11.35%

The probability is exactly the mean of SGA given smoker/non-smoker. The mean for a Bernoulli variable is its frequency or the expected value or the probability. 
C. These are re-parameterizations of the original question. These do not change the sample of data that we are looking at, nor the groups. The changes to the formula are just a different way of looking at the original question and do not change the scientific question at its most basic level.

a. Log(odds SGA| nonsmoker) = β0+β1(nonsmoker)

i. The intercept will be the same as the original for the fitted value of smoker =1. So, it would just be β0+β1 of the original. The slope would be the same but opposite direction since it is now flipped.

b. Log(odds NOTSGA| smoker) = β0+β1(smoker)

i. Complete inverse of original formula. Since now looking at the opposite response variable. Slop and intercept will be opposite signs. 

c. Log(odds NOTSGA| nonsmoker) = β0+β1(nonsmoker)

i. This will be the inverse of part a. The intercept will again be the fitted value of smoker=1, but it will not be opposite direction for β0+β1 and will be opposite slow sign as well. 

3. Original: E(SGA| smoker) = β0+β1(smoker) These are re-parameterizations of the original question. These do not change the sample of data that we are looking at, nor the groups. The changes to the formula are just a different way of looking at the original question and do not change the scientific question at its most basic level.
a. E(SGA| nonsmoker) = β0+β1(nonsmoker)

i. The slope should be opposite of the original. And the intercept should be β0+β1, as described above, the same as when you plug in 1 for smoker. 

b. E(NOTSGA| smoker) = β0+β1(smoker)

i. Opposite slope of the original. And intercept should be 1 minus the original intercept. 1 - β0 (original) (this only works since it is Bernoulli  and saturated model)

c. E(NOTSGA| nonsmoker) = β0+β1(nonsmoker)

i. Opposite slope of part a. So, same as the original. And intercept should be 1 minus part a. (this only works since it is Bernoulli  and saturated model)
4. Original: log[E(SGA| smoker)] = β0+β1(smoker) These are re-parameterizations of the original question. These do not change the sample of data that we are looking at, nor the groups. The changes to the formula are just a different way of looking at the original question and do not change the scientific question at its most basic level. Only for changing the poi. Not for changes to the response. 
a. Log [E(SGA| nonsmoker)] = β0+β1(nonsmoker)

i. The intercept will be the same as the original for the fitted value of smoker =1. So, it would just be β0+β1 of the original. The slope would be the same but opposite direction since it is now flipped.

b. Log [E(NOTSGA| smoker)] = β0+β1(smoker)

i. Slope will be different. Will not be a re-parameterizations since you are changing the response variable and performing poisson requires a log transformation. 

c. Log [E(NOTSGA| nonsmoker)] = β0+β1(nonsmoker)

i. re-parameterization of part b. same slope. Opposite direction. Intercept will be β0+β1 of part b. 
5. These analysis should correspond well to the chi squared test that we learned in Biost 517. Especially the odds and linear regression. The poisson is more difficult since you are performing a log transformation on the conditional expected value. Still, if comparing a risk ratio (odds ratio and difference in means) the results should be the same or nearly the same. 
6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Methods: The risk difference of infants who were small for gestational age (SGA) were compared by mother’s reported age (continuous variable) using the linear regression analysis. The two sided p value and 95% CI were calculated using the Wald based estimates. Regression slope and standard error estimated using the Huber-White sandwich estimator. The model is saturated and the sample size is large enough to assume that the distribution is approximately normal. Missing data was removed for this analysis.

Inference: Of the 755 mothers that had reported age and SGA values, the mean age reported was 24.8 years old (SD: 5.39 years). Mothers ranged from 14 to 43 years old. The average age for mothers who had SGA babies was 23.8 years old (SD 4.89 years). Range of 16 to 35 years old. While the average age mothers with non-SGA babies was 24.9 years old (SD: 5.45 years). Ranging from the full 14 to 43 years old. In this sample we do not see the oldest and the youngest mothers having SGA babies. The linear regression gives us for a ten year difference in age a 4.5% lower probability of SGA. With 95% confidence we would expect the true population difference to be between 9.1% lower to 0.07% higher probability of SGA for every ten year increase in age. With a p of 0.0537 and our significance level of 0.05 we cannot reject the null hypothesis that SGA and age are not associated. 

b. Methods: The risk ratio of infants who were small for gestational age (SGA) were compared by mother’s reported age (continuous variable) using the poisson regression analysis (robust). The two sided p value and 95% CI were calculated using the Wald based estimates. Regression slope and standard error estimated using the Huber-White sandwich estimator. The model is saturated and the sample size is large enough to assume that the distribution is approximately normal. Missing data was removed for this analysis.

Inference: Of the 755 mothers that had reported age and SGA values, the mean age reported was 24.8 years old (SD: 5.39 years). Mothers ranged from 14 to 43 years old. The average age for mothers who had SGA babies was 23.8 years old (SD 4.89 years). Range of 16 to 35 years old. While the average age mothers with non-SGA babies was 24.9 years old (SD: 5.45 years). Ranging from the full 14 to 43 years old. In this sample we do not see the oldest and the youngest mothers having SGA babies. 

The poisson regression gives us for a one year difference in age a 0.966 risk ratio. The average risk of SGA is almost identical by age. With 95% confidence we would expect the true population risk ratio to be between 0.930  to 1.00 for each increase in one year of age. With a p of 0.0460 and our significance level of 0.05 we reject the null hypothesis that SGA and age are not associated. In favor of the alternative that age and SGA are associated.
c. Methods: The odds ratio of infants who were small for gestational age (SGA) were compared by mother’s reported age (continuous variable)using the logistic regression analysis (robust). The two sided p value and 95% CI were calculated using the Wald based estimates. The model is saturated and the sample size is large enough to assume that the distribution is approximately normal. Missing data was removed for this analysis.

Inference: Of the 755 mothers that had reported age and SGA values, the mean age reported was 24.8 years old (SD: 5.39 years). Mothers ranged from 14 to 43 years old. The average age for mothers who had SGA babies was 23.8 years old (SD 4.89 years). Range of 16 to 35 years old. While the average age mothers with non-SGA babies was 24.9 years old (SD: 5.45 years). Ranging from the full 14 to 43 years old. In this sample we do not see the oldest and the youngest mothers having SGA babies.
The logistic regression gives us for a one year difference in age a 0.961 odds ratio of SGA. The odds of SGA is almost identical by age. With 95% confidence we would expect the true population odds ratio to be between .923 lower to 1.00 for SGA for every year increase in age. With a p of 0.0495 and our significance level of 0.05 we reject the null hypothesis that SGA and age are not associated. In favor of the alternative that age and SGA are associated.

d. Fitted values:
i. Linear: 0.161

ii. Poisson: 0.161

iii. Logistic: 0.161

iv. Descriptive statistics: 0.075

As you can see on the plot below. The lines are almost identical, but the mean values are actually much different. The mean value of just the age 20 mothers is 7.5% probability of SGA. But, the fitted lines give us a 16.1% probability of SGA for mothers that are 20. 

7. As noted in problem 6. The fitted values for all of these regressions are very similar, but the mean values (or probabilities in this case) are much different. When you look at an individual mean value for an age you will get a much different response than looking at the fitted value of the lines.  
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8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Methods: The odds ratio of infants who were small for gestational age (SGA) were compared by mother’s log transformed age (continuous variable)using the logistic regression analysis (robust). I used a log base 2 transformation. The two sided p value and 95% CI were calculated using the Wald based estimates. The model is saturated and the sample size is large enough to assume that the distribution is approximately normal. Missing data was removed for this analysis.

Inference: The logistic regression gives us for a two fold increase in age a 48% lower probability of SGA. With 95% confidence we would expect the true population difference to be between 74% lower to 2.3% higher probability of SGA for a two fold increase in age. With a p of 0.0564 and our significance level of 0.05 we cannot reject the null hypothesis that SGA and log age are not associated. 
b. Performing a log transformation on age is silly, because it is not very interpretable. I did a log base 2 transformation to discuss the two fold increase in age, but given that we are discussing pregnant women, and our sample size seems to represent the basic range of birthing women, approx teens to mid forties, a doubling in age doesn’t seem appropriate to describe the data or a scientific question.

