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1. You desire to do a more careful evaluation of the evidence at hand for associations between sex and cholesterol. 
a. Are mean cholesterol levels associated with sex in Caucasians? 
Mean cholesterol levels were 25.3 mg/dl lower in Caucasian males than in Caucasian females. Based on a 95% confidence interval, this observed difference in mean cholesterol would not be considered unusual if the true difference is between 22.3 and 28.3 mg/dl, with males having lower cholesterol than females. This difference is large enough to allow us with high confidence to reject our null hypothesis of no difference in mean cholesterol between Caucasian males and females (two-sided P < 0.0001). 
Effect: 222.8-197.5 = 25.3

SE: sqrt(1.092^2 + 1.103^2) = 1.552

Z-score: 25.3 / 1.552 = 16.3 

CI: 25.3 ± 1.96 * 1.552 = (22.26, 28.34)

b. Are mean cholesterol levels associated with sex in Noncaucasians?

Mean cholesterol levels were 15.7 mg/dl lower in Noncaucasian males than in Noncaucasian females. Based on a 95% confidence interval, this observed difference in mean cholesterol would not be considered unusual if the true difference is between 8.93 and 22.5 mg/dl, with males having lower cholesterol than females. This difference is large enough to allow us with high confidence to reject our null hypothesis of no difference in mean cholesterol between Noncaucasian males and females (two-sided P < 0.0001). 

Effect: 213.6-197.9 = 15.7

SE: sqrt(2.321^2 + 2.557^2) = 3.453

Z-score: 15.7 / 3.453 = 4.547

CI: 15.7 ± 1.96 * 3.453 = (8.932, 22.47)

c. Are mean cholesterol levels associated with sex after adjustment for race? Provide adjusted estimates using both importance and efficiency weights.

After adjustment for race/ethnicity using importance weights based on U.S. Census data, mean cholesterol levels were 24.0 mg/dl higher among women than among men of the same race. This difference is large enough to allow us to reject with high confidence our null hypothesis of no difference in mean cholesterol between men and women (two-sided P < 0.0001). Based on a 95% confidence interval, we conclude that such an observed difference is not unusual if the true difference in cholesterol between men and women of the same race is between 21.8 mg/dl and 26.2 mg/dl, with the higher values among women. 
After adjustment for race/ethnicity using efficiency weights based on the stratified standard errors, mean cholesterol levels were 23.7 mg/dl higher among women than among men of the same race. This difference is large enough to allow us to reject with high confidence our null hypothesis of no difference in mean cholesterol between men and women (two-sided P < 0.0001). Based on a 95% confidence interval, we conclude that such an observed difference is not unusual if the true difference in cholesterol between men and women of the same race is between 20.9 mg/dl and 26.5 mg/dl, with the higher values among women. 

Using importance weights based on U.S. Census data: 
wC = 0.8637
wN = 0.1363
Δadj 
= (wC x 25.3 + wN x 15.7) / (wC + wN)


= (0.8637 x 25.3 + 0.1363 x 15.7) / (0.8637 + 0.1363) 


= 24.0 mg/dl 

SEadj 
= sqrt[ (wC2 x se2(ΔC) + wN2 x se2(ΔN)) / (wC + wN)2 ]


= sqrt[ (0.8637^2 x 1.552^2 + 0.1363^2 x 3.453^2) / 1 ]

= 1.142

Zadj 
= 23.99 / 1.142 = 21.0

P < 0.0001

CI 
= 23.99 ± 1.96 * 1.142 = (21.8, 26.2) 

Using efficiency weights based on sample standard errors: 

wC = (1/1.552^2) = 0.4152

wN = (1/3.453^2) = 0.08387

Δadj 
= (wC x 25.3 + wN x 15.7) / (wC + wN)


= (0.4152 x 25.3 + 0.08387 x 15.7) / (0.4152 + 0.08387) 


= 23.69

SEadj 
= sqrt[ (wC2 x se2(ΔC) + wN2 x se2(ΔN)) / (wC + wN)2 ]


= sqrt[ (0.4152^2 x 1.552^2 + 0.08387^2 x 3.453^2) / (0.4152 + 0.08387)^2 ]


= 1.416
Zadj 
= 23.69 / 1.416 = 16.73
P < 0.0001

CI 
= 23.69 ± 1.96 * 1.416 = (20.9, 26.5) 

d. Does race modify the association between mean cholesterol level and sex? 

The difference in mean cholesterol between males and females was 9.6 mg/dL greater among Caucasians than among Noncaucasians. This difference is large enough to reject a null hypothesis of no effect modification by race when looking at the association between mean cholesterol level and sex, and conclude that race does modify this association (two-sided P = 0.0112). Based on a 95% confidence interval, this observed difference in the association between sex and cholesterol level across groups defined by race is consistent with a true difference between 2.18 and 17.0 mg/dL, with the larger effect (larger mean difference in cholesterol) being among Caucasians relative to Noncaucasians. 

Effect
= 25.3-15.7 = 9.6

se(ΔΔ) 
= sqrt( 1.552^2 + 3.453^2 ) = 3.786

Z 
= 9.6 / 3.786 = 2.536 

P val
= 0.0112

CI 
= 9.6 ± 1.96 * 3.786 = (2.179, 17.02) 

2. You also desire to do a more careful evaluation of the evidence at hand for fibrinogen. You therefore answer the questions of problem 1 using the statistics for fibrinogen.

a. Are mean fibrinogen levels associated with sex in Caucasians?
Mean fibrinogen levels were 2.9 mg/dl lower in Caucasian males than in Caucasian females. Based on a 95% confidence interval, this observed difference in mean fibrinogen would not be considered unusual if the true difference is between 2.35 mg/dl higher in males and 8.15 mg/dl lower in males. This difference is not large enough to allow us with high confidence to reject our null hypothesis of no difference in mean fibrinogen between Caucasian males and females (two-sided P = 0.279). 

Effect: 
320.7 – 317.8 = 2.9 mg/dl (female – male)

SE: 
sqrt(1.627^2 + 2.126^2) = 2.677

Z:
2.9 / 2.677 = 1.083

P: 
0.2788

CI: 
2.9 ± 1.96 * 2.677 = (-2.347 , 8.147)

b. Are mean fibrinogen levels associated with sex in Noncaucasians?

Mean fibrinogen levels were 15.7 mg/dl lower in Noncaucasian males than in Noncaucasian females. Based on a 95% confidence interval, this observed difference in mean fibrinogen would not be considered unusual if the true difference among Noncaucasians is between 1.40 and 30.0 mg/dl, with males having lower fibrinogen than females. This difference is large enough to allow us to reject our null hypothesis of no difference in mean fibrinogen between Noncaucasian males and females (P = 0.0314). 

Effect: 
349.4-333.7 = 15.7

SE: 
sqrt(4.643^2 + 5.628^2) = 7.296

Z:
15.7 / 7.296 = 2.152

P: 
0.0314

CI: 
15.7 ± 1.96 * 7.296 = (1.40 , 30.0)

c. Are mean fibrinogen levels associated with sex after adjustment for race? 

After adjustment for race/ethnicity using importance weights based on U.S. Census data, mean fibrinogen levels were 4.65 mg/dl higher among women than among men of the same race. This difference is not large enough to allow us to reject our null hypothesis of no difference in mean fibrinogen between men and women (P = 0.0650). Based on a 95% confidence interval, we conclude that such an observed difference is not unusual if the true difference in fibrinogen between men and women of the same race is between 0.288 mg/dl lower and 9.58 mg/dl higher among women than among men. 

After adjustment for race/ethnicity using efficiency weights based on the stratified standard errors, mean fibrinogen levels were 4.42 mg/dl higher among women than among men of the same race. This difference is not large enough to allow us to reject our null hypothesis of no difference in mean fibrinogen between men and women (P = 0.0787). Based on a 95% confidence interval, we conclude that such an observed difference is not unusual if the true difference in fibrinogen is between 0.506 mg/dl lower and 9.34 mg/dl higher among women than among men of the same race. 

Using importance weights based on U.S. Census data: 

Δadj 
= (wC x 2.9 + wN x 15.7) / (wC + wN)


= (0.8637 x 2.9 + 0.1363 x 15.7) / (0.8637 + 0.1363) 


= 4.645 mg/dl 

SEadj 
= sqrt[ (wC2 x se2(ΔC) + wN2 x se2(ΔN)) / (wC + wN)2 ]


= sqrt[ (0.8637^2 x 2.677^2 + 0.1363^2 x 7.296^2) / 1


= 2.517
Zadj 
= 4.645 / 2.517 = 1.845
P 
= 0.06504
CI 
= 4.645 ± 1.96 * 2.517 = ( -0.2883 , 9.578 ) 

 Using efficiency weights based on sample standard errors: 

wC = (1/2.677^2) = 0.1395
wN = (1/7.296^2) = 0.01879
Δadj 
= (wC x 2.9 + wN x 15.7) / (wC + wN)


= (0.1395 x 2.9 + 0.01879 x 15.7) / (0.1395 + 0.01879) 


= 4.419
SEadj 
= sqrt[ (wC2 x se2(ΔC) + wN2 x se2(ΔN)) / (wC + wN)2 ]


= sqrt[ (0.1395^2 x 2.677^2 + 0.01879^2 x 7.296^2) / (0.1395 + 0.01879)^2 ]


= 2.513
Zadj 
= 4.419 / 2.513 = 1.758
P 
= 0.0787
CI 
= 4.419 ± 1.96 *  2.513 = (-0.506, 9.34) 

d. Does race modify the association between mean fibrinogen level and sex? 

The difference in mean fibrinogen between males and females was 12.8 mg/dL greater among Noncaucasians than among Caucasians. This difference is not large enough to reject a null hypothesis of no effect modification by race when looking at the association between mean fibrinogen level and sex (P = 0.0996). Based on a 95% confidence interval, this observed difference in the association between sex and fibrinogen level across groups defined by race is consistent with a true difference in effect between 2.43 mg/dL smaller and 28.0 mg/dL larger among Noncaucasians than among Caucasians. 

Effect
= 15.7 – 2.9 = 12.8 (NonC – Cauc) 
se(ΔΔ) 
= sqrt( 2.677^2 + 7.296^2 ) = 7.772
Z 
= 12.8 / 7.772 = 1.647
P val
= 0.0996
CI 
= 12.8 ± 1.96 * 7.772 = (-2.433, 28.03) 
3. (Obtaining estimates for use in sample size calculations when using mean cholesterol) 

a. What is your best estimate of the standard deviation of cholesterol within the sample? Report using four significant digits. 

The estimated standard deviation of cholesterol within the sample is 39.29 mg/dl. 

b. Assuming that the correlation ( of cholesterol measurements made two years apart on the same individual is ( = 0.40, what is the standard deviation of the change in cholesterol measurements made after three years within the population? Report using four significant digits.

The standard deviation of the change in cholesterol measurements is 43.04 mg/dl. 
The standard deviation of the difference is calculated by: 

 sd(y2 – y1) 
= sqrt( [sd(y2)]^2 + [sd(y1)]^2 – 2*0.4*sd(y2)*sd(y1)



= √(2 * 39.29^2 – 2 * 0.4 * 39.29^2) = 43.04 mg/dl. 
c. We could also consider an analysis that would adjust for age and sex. In such a setting, we would want an estimate of the SD within groups that are homogenous for age and sex. What is your best estimate of the standard deviation of cholesterol within groups that had constant age and sex? Report using four significant digits. (Hint: Recall that the output from a regression model will provide an estimate of a common SD within groups as the “root mean squared error”. So you will need to perform a regression that allows each age-sex combination to have its own mean. A linear regression modeling age continuously along with sex would be one approach.)

We estimate that the standard deviation of cholesterol within groups defined by age and sex is 37.49 mg/dl. 

4. (A two arm study of change in cholesterol after 2 years of treatment with adjustment for age and sex) 
a. What sample size will provide 80% power to detect the design alternative?

We would need 530 subjects to have 80% power to detect the design alternative.
N = δ2αβ * V / Δ2. 

δ2αβ = (z1-α + zβ)2 = (1.960 + 0.8416)^2 = 2.802^2 = 7.851. 

V = 8*37.49^2*(1-0.4) = 6746
Δ2 = distance^2 = 10^2 = 100 

N = δ2αβ * V / Δ2 = 7.851 * 6746 / 100 = 529.6. 
b. What sample size will provide 90% power to detect the design alternative?

We would need 710 subjects to have 90% power to detect the design alternative.  
N = δ2αβ * V / Δ2. 

δ2αβ = (z1-α + zβ)2 = (1.960 + 1.282)^2 = 3.242^2 = 10.51. 

V = 8*37.49^2*(1-0.4) = 6746
Δ2 = distance^2 = 10^2 = 100 

N = δ2αβ * V / Δ2 = 10.51 * 6746 / 100 = 709.004.
c. How would the sample size for 90% power change if you had not decided to adjust for age and sex?
Had we not decided to adjust for age and sex, we would need 779 subjects to have 90% power to detect the design alternative. 
N = δ2αβ * V / Δ2. 

δ2αβ = (z1-α + zβ)2 = (1.960 + 1.282)^2 = 3.242^2 = 10.51. 

V = 8*39.29^2*(1-0.4) = 7409.8
Δ2 = distance^2 = 10^2 = 100 

N = δ2αβ * V / Δ2 = 10.51 * 7409.8 / 100 = 778.8.
d. What would be the effect on your sample size computation if you had decided to analyze only the final cholesterol measurement adjusted for age and sex (i.e., not the change)? (A qualitative answer is sufficient.)

The sample size required would decrease, since the standard deviation for the difference calculations (baseline sd) is larger than the standard deviation for the final cholesterol measurement, due to the positive correlation. Also, the formula to estimate V in this case would be V=4σ2 (using a 1:1 ratio of treatment to placebo), and 4σf2 < 8σb2(1-ρ) when (1-ρ) > ½, or equivalently ρ < ½, for equal values of σ.  
e. What would be the effect on your sample size computation if you had decided to use an Analysis of Covariance model that adjusted for age, sex, and the baseline cholesterol level? (A qualitative answer is sufficient.)

The sample size required would be smaller than in the approaches above. The estimate of V here is 4σ2(1-ρ2), using the baseline standard deviation (after adjusting for age and sex) as σ. Since ρ is less than 1, ρ2 is smaller than ρ and (clearly) 4<8; thus  4σ2(1-ρ2) is smaller than 8σ2(1-ρ). 
5. (A two arm study of cholesterol after 2 years of treatment and the effect of dichotomizing the data) 

a. Using the inflammatory biomarkers dataset, what is your estimate of the proportion pC of subjects on the control arm with serum cholesterol below 200 mg/dL at the end of treatment?
pC = 0.3919
b. Using the inflammatory biomarkers dataset, what is your estimate of the proportion pT of subjects on the treatment arm with serum cholesterol below 200 mg/dL at the end of treatment? (This is assumed to be equal to the number having cholesterol levels below 210 mg/dL in the CHS data.)
pT = 0.4895
c. What sample size will provide 90% power to detect the design alternative?

A sample size of 1078 subjects will provide 90% power to detect the design alternative.  
N = δ2αβ * V / Δ2. 

δ2αβ = (z1-α + zβ)2 = (1.960 + 1.282)^2 = 3.242^2 = 10.51 

V =2( pT,(1- pT, ) +  pC (1 - pC )) = 2 (0.4895 * (1-0.4895) + 0.3919 * (1-0.3919)) = 0.9764
Δ = θ1 = 0.4895 – 0.3919 = 0.0976
N = δ2αβ * V / Δ2 = 10.51 * 0.9764 / 0.0976^2 = 1077.3.

d. What advantages or disadvantages does this study design have over the study design used in problem 4b?

Both this study design and the one in 4b use a two-arm study design, which is preferred over a one-arm study design. If it is actually of highest clinical importance to lower cholesterol by 10 mg/dl, then the study design in question 5 is most clinically relevant. If this cutoff is not clinically significant, then we have lost information about how treatment might lower cholesterol levels across the population by dichotomizing cholesterol.  We can see the loss of precision in the increase in required sample size for 90% power: we would need 710 subjects in the problem 4b design, compared to 1078 subjects in problem 5. 

Also, the study design in problem 4 explicitly adjusts for age and sex, which may be preferable if we have scientific reason to suggest that age and sex affect cholesterol levels. Such scientific evidence does exist. 

