Lecture Outline

• Case Study
 – Scientific Background
 – Materials and Methods
 • Source of Data
 • Statistical Methods
 – Results
 – Discussion

Case Study

• “Use of cytosine arabinoside and total body irradiation as conditioning for allogeneic marrow transplantation in patients with acute lymphoblastic leukemia: a multicenter survey”
Observational Study

- Compare the disease free survival in patients treated with a particular conditioning regimen to historical reports of other treatments
 - Major analysis issues
 - Summary measures of survival distribution to report
 - Selection of groups to use as strata for estimation of outcomes
 - Comparison to historical reports of other therapies

Goals of Case Study

- Illustrate approach to a data analysis problem in which data driven analyses play a major role
 - Approach to the data
 - Issues to address during analysis of time to event data
 - Data driven identification of groups for analysis
 - Presentation of results

Scientific Background

- Bone marrow transplantation in acute lymphoblastic leukemia
 - Patients who had relapsed or were at high risk of relapse were commonly recipients of bone marrow transplantation
 - Eliminate leukemia from the bone marrow
 - high doses of chemotherapy and total body irradiation
 - Infuse healthy bone marrow from suitable donor
Scientific Background

• Conditioning regimens
 – Previous standard conditioning regimen was cyclophosphamide and total body irradiations
 – Interest in cytosine arabinoside (ara-C) due to its penetrance into central nervous system and efficacy in reinducing patients whose leukemia had relapsed

Scientific Background

• Question of interest
 – Was the experience with ara-C any better than that previously reported with the cytoxan conditioning regimen?

Materials and Methods

Source of Data

• Survey of 14 centers using ara-C as a conditioning regimen
• 222 patients treated between 1981 and 1989
Scientific Classification of Data

- (Classification by statistician)
 - Demographics (age, sex, race)
 - Presentation of ALL at diagnosis (date, WBC, immunophenotype)
 - Conditioning regimen (ara-C dose, other agents, irradiation)
 - Bone marrow transplantation (date, remission status, donor information)
 - GvHD prophylaxis
 - Outcome (relapse, cause of death)

Materials and Methods: Table 1

- Descriptive statistics on available data to provide information on materials and methods
 - Missing data (pervasive in such studies)
 - Especially race, cell count, duration of disease
 - ?Quality of cooperation among centers
 - Location: Mean, median, percentages of binary data
 - Spread: Standard deviation, frequency tables, range

Table 1: Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Available cases</th>
<th>Frequency (%)</th>
<th>Mean (SD)</th>
<th>Median range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>210</td>
<td>24.9</td>
<td>(3.4/9.6)</td>
<td>10.7/0.5-40.7</td>
</tr>
<tr>
<td>3-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td>241</td>
<td>60.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex</td>
<td>159</td>
<td>39.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-10</td>
<td>225</td>
<td>51.5</td>
<td>10.6/14.2</td>
<td>16.4/14-146</td>
</tr>
<tr>
<td>11-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone marrow transplantation</td>
<td>380</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location (centers)</td>
<td>120</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical Task

- Provide estimates of distribution of clinical outcomes
 - Essentially a one sample problem: All subjects received ara-C
 - However, may want to make description within groups defined by important prognostic variables
 - Readers will have to compare results to those reported in the literature or in their practice
Summary Measure

- Choice of summary measure for outcome
 - Interested in relapse and death
 - Disease free survival
 - Variable time of follow-up: Censored data
 - Choices:
 - Quantiles (e.g., median)
 - Survival probabilities at fixed points in time
 - 100 days indicative of toxic death from BMT
 - 1, 3, or 5 year survival probabilities for clinical relevance, comparisons

Predictors

- Definition of groups for presentation of estimates
 - Identify strongest predictors of survival
 - Allows more precision of estimates
 - Allows comparability with other studies
 - Methods
 - Most statistically significant predictors
 - Form of models to allow comparability

Statistical Methods

- Description of statistical methods
 - Methods for descriptive statistics: Kaplan-Meier
 - Necessary because nonstandard at the time
 - Methods for model building
 - Analysis methods: Proportional hazards
 - Interpretation
 - Model building
 - Selection of variables
 - Validity of assumptions
 - Missing data
Organization of Results

- Presentation builds to conclusions
 - Dispense with potential nuisance covariate
 - Calendar year
- Finding important predictors of survival
 - Univariately
 - Multiple regression model
- Presentation of estimates within major strata
- Comparison to previously reported results for other regimens

Model Building: Univariate First

- Table II: Present statistically significant univariate predictions
 - Overall test for trend based on continuous model
 - Descriptive estimates within strata
 - Strata chosen independent of outcome
 - Reference group chosen to allow sufficient precision for comparisons
 - Space constraints suggest that nonsignificant variables could be examined only in Table III
- Figures display Kaplan-Meier curves by strata
 - Note depiction of censored data
Model Building: Multivariate

- Table III: Estimates of association adjusted for “final model”
 - Selection of variables (and form of variables) for final model based on
 - Statistical significance
 - Need for relatively few strata
 - Ability to compare with the literature
 - Obvious data-driven aspect to choice of final form of variables
 - Should be careful about believing any thresholds dividing the strata
Discussion

- Table IV: Direct comparison with previously reported results for cyclophosphamide insofar as possible from literature
 - Provide estimates of survival and relapse to match patient populations and time frames

Discussion

- Limitations of study
 - Observational aspect of study
 - Confounding by treatment center
 - (Data driven aspect of selecting strata)