Comments about the Wilcoxon Rank Sum Test
Scott S. Emerson, M.D., Ph.D.

This document presents some general comments about the Wilcoxon rank sum test. Even the most casual reader
will gather that I am not too impressed with the scientific usefulness of the Wilcoxon test. However, the actual
motivation is more to illustrate differences between parametric, semiparametric, and nonparametric (distribution-
free) inference, and to use this example to illustrate how many misconceptions have been propagated through a focus
on (semi)parametric probability models as the basis for evaluating commonly used statistical analysis models.

The Wilcoxon rank sum test was defined to compare the probability distributions for measurements taken from
two independent samples. This document describes

1. A general notation that applies to all two sample problems.

o

A definition of parametric, semiparametric, and nonparametric probability models that might be used in the
two sample setting.

A characterization of the null hypotheses commonly tested in the two sample setting.
The transformation of the data used in the definition of the Wilcoxon rank sum test.

The formulation of the Wilcoxon rank sum statistic, including its relationship to the Mann-Whitney U statistic.

SR o

The sampling distribution of the Wilcoxon rank sum statistic under the various choices for the null and alternative
hypotheses, and the formulation of hypothesis tests and test statistics.

=

The interpretation of the statistic with respect to common summary measures of probability distributions.
8. The intransitivity of the functional Pr(X >Y).
9. Some results about the relative efficiency of the Wilcoxon rank sum test.

10. Relevance of the above comments to other parametric and semiparametric testing / estimation settings.
1. General Notation

We consider a scientific question that is to be statistically addressed by comparing the distribution of some
random variable across two populations. Without loss of generality, we adopt the nomenclature from the setting
of a randomized clinical trial in which we have a “treated” population and a “control” population. For notational
convenience we denote the random variable by X when measured on the “treated” group and by Y when measured
on the “control” group.

We thus consider the two sample problem is which we have:
e independent, identically distributed observations X; ~ F(z) = Pr(X; <z) fori=1,...,n, and
e independent, identically distributed observations Y; ~ G(y) = Pr(Y; <y) fori=1,...,m.

We further assume that X; and Y; are independent for all 1 <i<nand1<j <m.

2. Probability Models for the Two Sample Problem

2.1. Parametric Probability Models

By a parametric probability model, we assume that there exists a finite p dimensional parameter & and a known
probability distribution function Fy depending on & such that F(z) = Fy(x;d = dx) and G(y) = Fo(y;d = Jy)
for two specific values Jx and Jy. Typically, a statistical problem involves the estimation and testing of some
0 =h(@x,dy).
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Estimation of &y amd &y will typically proceed using parametric likelihood theory or parametric methods
of moments estimation. Estimation of F and G will then use the parametric estimates F (x) = Fo(z,dx) and
Gly) = Fo(y,o_fy). Estimation of other functionals of those distributions will then be based on the parametric
estimates derived from F(z) and G(y).

Examples of commonly used parametric probability models include

e Normal: A continuous probability model having parameter & = (u,0?) with —co < p < oo and 0 < o < oo.
Fo(z,8 = (p,0?)) = @ ((x — p) /o), where

o1 2
O(x) :/ me‘” du

is the standard normal cumulative distribution function. Most often our statistical question of interest relates
to the difference of means 0 = px — py.

e Exponential: A continuous probability model having parameter & = A with 0 < A < oo.
Fo(2,8 =) = (1 — e )10 00) (2)

In this setting we might consider statistical questions based on the difference of means 8 = 1/Ax — 1/\y or the
hazard ratio § = Ax /Ay

e Poisson: A discrete probability model having parameter & = A with 0 < A < 00, and, for some known measure
t of time and space,

L= e~ M ()\t)k

]
P k!

In this setting we might consider statistical questions based on the difference of mean rates § = Ax — Ay or the
ratio of mean rates = Ax/Ay.

2.2. Semiparametric Probability Models

The following definition of semiparametric probability models is a bit more restrictive than those used by some
other authors. This definition is used because 1) it is satisfied by the most commonly used semiparametric statistical
analysis models, and 2) there are some important common issues that arise in all semiparametric models that satisfy
this definition.

By a semiparametric probability model, we assume that there exists a finite p dimensional parameter & and
an unknown probability distribution function F, depending on & such that F(z) = Fy(z;0 = dx) and G(y) =
Fy(y; @ = Jy) for some specific values @x and &y. The unknown, infinite dimensional Fy(x,dy) for some “standard”
choice of &y is generally just regarded as a nuisance parameter. For identifiability it is sometimes convenient to put
constraints on the moments of Fy(x,dy) for the “standard” choice of &y. In other settings, it is convenient to choose
Fyo(z,d0) = G(x), the distribution in some control population.

The salient feature of a semiparametric model (under this definition) is the existence of some 6 = h(dx,dy ) that
allows the transformation of F' to GG, and estimation and testing of 8 can typically be performed without appealing
directly to estimation of Jx and Jdy. We do note that in many cases the semiparametric model also specifies a
way in which 0 can be used to transform the individual X;’s in such a way that the transformed variables, say
W; = ¥(X;,0) are distributed according to G. In such cases one could imagine an estimation approach that finds
the choice § such that W; = (X}, #) would have an empirical distribution function Fy that was closest (in some
sense) to the empirical distribution function G of the Y;’s.

When it is of interest to do so, the nuisance parameter Fy(z,dg) is estimated by using the parameter estimate
¢, and then to perform suitable transformations of the X;’s or their empirical distribution function F to an estimate
Fy based on the entire sample.

Examples of commonly used semi-parametric probability models include
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e Location shift: A continuous probability model having parameter w = p with baseline probability distribution
Fo(z;w = 0) typically chosen to have mean 0. Then F(x) = Fy(x;w = ux) = Folx — px;w = 0) and
Gly) = Foly;w = py) = Fo(y — py;w = 0). This then also ensures that G(y) = F(y — (ux — py)), and
E(X) = E(Y)+ (ux — py). Hence, in this setting, we typically consider statistical questions based on the
difference § = px — py, although that same number represents the difference of any quantile, as well. Note that
under this model X — 6 and Y are distributed according to G, so F(z) = G(z —6) and G(y) = F(y + 0).

e Shift-scale: A continuous probability model having parameter & = (u, o) and “baseline” distribution Fy(z;dp)
typically chosen such that & = (0,1) or such that G(y) = Fo(y,dp) . Then

F(r) = Fo(x; 6 = dx) = Fo ((x ; tx) ;W= 030) and  G(y) = Fo(y;d = dy) = Fp ((y — 'uy);éff = ﬁo) :
X

This then also ensures that

Oy (

oy ox

-0 (3 (Zonm)) ma w-r (- (3 -n)).

In this setting, we could consider statistical questions based on two dimensional parameter

= ox ox
0= </U‘X - MY?) 3
oy Oy

X—px)+py ~Y

and

where (X — 61)/602 and Y are distributed according to G. However, more typically inference is based on the
unscaled difference in means px — py, with the scale parameters treated as nuisance parameters.

e Accelerated failure time: A nonnegative random variable has a continuous probability distribution defined by
parameter & = A and some “baseline” distribution Fy(z;& = Xg). Then

F(x) = Fo(z; 0 = Ax) = Fo(Axz; 0 = Ng) and G(y) = Fo(y; @ = Ay) = Fo(Ayy; G = No).

This then ensures that Ax X/A\y ~ Y, Ay Y/Ax ~ X,
A A
F(z)=G (:EX) and Gy =F <yY) .
)\y )\X

In this setting we might consider statistical questions based on § = Ay /Ax, which can be shown to be the ratio
of any quantile of the distribution of X to the corresponding quantile of the distribution of Y. Under this model,
X/0 and Y are both distributed according to G, hence the accelerated failure time model is a subset of a larger
semiparametric scale family (which larger family might allow random variables that could also take on negative
values).

e Proportional hazards: A nonnegative random variable has a continuous probability distribution defined by
parameter o = A and some “baseline” distribution Fy(x;& = Ag). Then

Fz)=Fy(z;0=Ax)=1—-[1—Fy(z;3 = A)™ and Gy) =Fo(y;d=Ay) =1—[1 — Fy(y; @ = \o)] .

This then ensures that

AX Ay

F(z)=1-[1-Gx)]* and Gy)=1—-[1-F(y)]*x .

In this setting we might consider statistical questions based on § = Ax /Ay, which can be shown to be the ratio
of the hazard function for the distribution of X to that of the distribution of Y. In its general form, there is
no specific transformation of X that would lead to the transformed variable having the same distribution as
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Y. However, any monotonic transformation of both X and Y will lead to the same relationship between the
distribution of the transformed X and the distribution of the transformed Y.

2.3. Nonparametric Probability Models
By a nonparametric probability model, we assume that the distribution functions F' and G are unknown with

no pre-specified relationship between them.

Typically, a statistical problem involves the estimation and testing of some 6 = d(F(z),G(y)), where d(-,-)
measures some difference between two distribution functions.

Common choices for § might be contrasts (differences or ratios) of univariate functionals (e.g., means, geometric
means, medians):

e difference of means: 0 = [xdF(z) — [ydG(y)
e ratio of geometric means: 6 = exp [ [ log(z)dF(z) — [log(y)dG(y)]
e difference of medians: § = F~1(0.5) — G~1(0.5)
e difference of the probability of exceeding some threshold ¢: § = G(¢) — F(c)
At times 6 is defined based on a bivariate functional:
e median difference: 0 = F;iy(O.S)
e maximal difference between cumulative distribution functions: § = max|F(z) — G(z)|

e probability that a randomly chosen value of X exceeds a randomly chosen value of Y: 8 = Pr(X >Y)
3. Characterization of null hypotheses

In two sample tests, we are often interested in inference about general tendencies for measurements in the
treatment group (X ~ F) to be larger than measurements in the control group (Y ~ G). The null hypothesis to be
disproved is generally one of some tendency for measurements to be similar in the two populations. As noted above,
we generally define some estimand 6 that contrasts the distributions F' and G.

We thus find it of interest to consider two distinct levels of null hypothesis.
o the “Strong” null hypothesis: Hy : F(z) = G(x)Vx

e the “Weak” null hypothesis: Hj : 8 = 6y where 6 is typically chosen to be the value of 6 when the strong null
is true.

There are two main distinctions that need to be made between these hypotheses:

First, scientifically, if we have chosen the form of 6 to capture scientifically important differences in the distribu-
tion, then we might only want to detect differences between the distributions that do affect 8. It is of course possible
that a treatment might modify aspects of a probability distribution in a way that 6 is not affected. For instance, if 6
is measuring the difference in medians, a treatment that only modifies the upper 10% of the probability distribution
will have 8 = 6y. Hence, the strong null would be false, but the weak null would be true.

Second, statistically, if our true goal is to make statements about whether the weak null is true or not, calculating
the variance of our test statistic under the strong null can lead to tests of the wrong statistical level (the type I error
might be wrong as a test of the weak null). When this is true, we can only interpret our results as rejecting the
strong null hypothesis and cannot make a statistically valid statement about the weak null unless we use a different
variance estimate.

The issues that arise in common practice are that:

e Use of a parametric or semiparametric probability model might suggest (for reasons of efficiency) the testing and
estimation of a particular choice of #. Such a choice might directly address the scientific question at hand, or it
might be used to derive tests and estimates of some function scientifically important () using a parametric or



Biost 514: Notes on Wilcoxon (v2009.11.28) Emerson, Page 5

semiparametric estimator w(é) .

e In a distribution free setting, ¥ () may not be consistent for the scientifically important functional. For instance,
the parametric estimator of the median in a lognormal model is not consistent for the median of an exponential
model. If the estimation of the median was the scientifically important task, then the use of the wrong assumption
about the shape of the distribution might make the analysis scientifically invalid.

e Even if the parametric or semiparametric estimator can be shown to be consistent in the distribution free setting,
the use of the parametric or semiparametric model to estimate the variability of the estimator might lead to
invalid statistical inference. For instance, in a Poisson probability model, the efficient estimator of the rate is the
sample mean, and the parametric estimator of the standard error is also based on the sample mean due to the
known mean-variance relationship of the Poisson distribution. However, should the count data not be Poisson
distributed, that estimated standard error may be smaller than or larger than the true standard error for the
sample mean.

e Even if the parametric or semiparametric estimator of the standard error can be shown to be consistent for the
true standard error under the null hypothesis of the parametric or semiparametric model, that null hypothesis
most often corresponds to the strong null hypothesis. Hence, under the weak null hypothesis (which may be
scientifically more relevant), the statistical test is possibly of the wrong size.

e The statistical efficiency of a parametric or semiparametric estimator might be substantially affected by even
small (statistically undetectable) departures from the parametric and semiparametric probability model.

There are settings in which there is no distinction between the strong null and the weak null. For instance, in
the setting of independent binary data, the strong and weak null are identical: The measurements have to follow the
one parameter Bernoulli family, differences in the proportion are synonymous with differences in the distribution.
Similarly, in the setting of any ordered random variable when defining § = max |F(z) — G(z)| as the maximum
difference between the cumulative distribution functions, if § = 0, the strong null has to be true and vice versa.
(This is the functional tested in the Kolmogorov-Smirnov test.)

The distinctions between the strong and weak null hypothesis will be illustrated below with the Wilcoxon rank
sum statistic.

4. Transformation of the data

The Wilcoxon rank sum test can be thought of as a transformation of the original data to their ranks. That
is, given a sample of independent, identically distributed X;, i = 1,...,n, and a sample of independent, identically
distributed Y;, i = 1,...,m, we transform all of the random variables from the scale they were originally measured
on to their ranks. When there are no ties, this can be written as

n m
Ry =Y lix,<xq+ 2 ly,<x,
j=1 j=1

n m
Si =D lpevg+ ) ly<wy
Jj=1

j=1

where the indicator function 14 is 1 if A is true and 0 otherwise. Under the above notation, the observation with the
lowest value in the combined sample will have rank 1, the observation with the highest value will have rank m + n.

In the presence of ties in the sample, we modify the ranks to use the midrank among the tied observations:
R; =rank(X;) = R} = () _1ix,=x)+ Y ly,=x, — 1)/2
j=1 j=1

S =rank(Y;) = 7 — O lix,=yv + Y _ ljy,=yvy — 1)/2
j=1

Jj=1
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It should be noted that in the absence of ties, R} = R; and S = S;, so these latter definitions are taken to be the
defining transformation.

5. Definition of the statistic

5.1. Formulation as the rank sum

The Wilcoxon rank sum test statistic is then (as its name implies) based on the sum of the ranks for each group

R= XH:Ri
=1

S=>)"5;
i=1

Note that considering just one of R or S is sufficient because

m—+n

R4S — Zl_ (m—l—n)(T;L-i-n—i—l)

i=1

where we make use of the result Zf\ilz = N(N +1)/2. This can be established by noting that vazlz = Zilil(N —

i+ 1), thus
N N
Z (ZHZ —z+1>

(i+N—i+1)

l\D\»—t

Il
N =
=7

s
I
—

(N+1)

N
Il
_

Il
| = DN =
=

SNV +1)

(Though this was of course known to others, Gauss derived this result on his own in about first grade when his
teacher gave his class the busy work of adding the numbers 1 to 100.)

The intuitive motivation for such a statistic is obvious: If X tends toward larger values than Y, it stands to
reason that the measurements of X will correspond to the larger ranks. We could look at the average rank or the
sum of the ranks, it does not really matter.

5.2. Formulation as a U-statistic

There is an alternative form of the Wilcoxon rank sum test, the Mann-Whitney U statistic, that is perhaps a
more useful derivation of the test, because it provides more insight into what scientific quantity is being tested and
a useful structure for similar methods to other settings. In the Mann-Whitney U statistic, we are interested in the
probability that a randomly chosen X will be greater than a randomly chosen Y. We estimate this by

m
D [lxsy) +05 % x|

1j=1

U =

n
1=

From our definition of R; and R, we find that

Zgg X >X,] w7



Biost 514: Notes on Wilcoxon (v2009.11.28) Emerson, Page 7

which, for a given sampling scheme, is constant. Thus the sampling distribution for R and the sampling distribution
for U just differ by that constant, and tests based on R are equivalent to tests based on U.

6. Null sampling distribution

The null hypothesis considered by the Wilcoxon rank sum test (and, equivalently, the Mann-Whitney U statistic)
is the strong null hypothesis that the X;’s and the Y;’s have the same probability distribution. The test does not
make any assumptions about that common probability distribution.

In the derivations given below, we assume that there are no ties in the data. In the presence of ties, some
modifications must be made to the variance of the null sampling distribution. Interested readers can see Lehmann’s
Nonparametric Statistics.

6.1. Deriwation of moments using the Wilcozon rank sum

Under the null hypothesis, then, the sampling distribution of R is the same as that of the sum of n numbers
chosen at random without replacement from the set of numbers {1,2,...,m + n}. We can find the moments of this
sampling distribution of R as follows.

The expectation of R is

nE[Rl]

where the last step follows by the fact that all the R;’s are identically distributed (but not independent due to the
sampling without replacement). Because each of the m + n ranks are equally likely to be chosen for R; under the
null hypothesis, it follows that

1 m—+n
E[Ri}:m+n > i
i=1
1 (m+n)(m+n+1) (m+n+1)

m+n 2 n 2

which yields

The variance of R is
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and

E[R’]=F _<§Ri>2

n n

=E|> Y RiR,

|i=1 j=1

n t—1

—FE ZR2+QZZRR

=1 j=1

n 1—1

E[R?]+2) Y E[R;R)]

i=1 j=1
=n [Rf]Jrn(n— 1)E[R:1 Ry

HM:

where, again, the last step follows by the fact that all the R;’s are identically distributed and the joint distribution
of (R;, R;) is the same for all values i =1,...,n, j=1,...,n, and i # j. Now

E[R?
[Ri] = man ; i
and because i = 22:1(2]' — 1) we can find
N N i
I 3 RO
i=1 i=1 j=1
N N
= Z 2(2 j—1) (reversing order of summation)
=1 i=j
N
= Z(N —Jj+1)(25-1) (summand does not depend on 1)
j=1
N N N
=@2N+3)> j-2) =) (N+1)
j=1 j=1 j=1
al N(N +1)
321'2 =(2N+3)————~= —N(N+1) (moving sum of j2 to LHS)

.>
Il
_

9 _ (2N +1)N(N +1)
6

M1

(simplifying terms)

@
Il
—

Therefore we have

1 2m+n)+1)(m+n)(m+n+1) _ 2m+n)+1)(m+n+1)

E[R}] =
m+n 6 6

Similarly, the joint distribution for (R, Rs) is just the distribution of choosing two numbers without replacement
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from {1,2,...,m+n}, so

m-+n

BBy Ra] = (m+ n)( ernfl ZZZ]
=1 j#i
1 m+n m+n m+n.2
:(m+n)(m+n—1) ; ;Uigl
B <m+n) +n+1) (m+n)(m+n+1)_(2(m+n)+1)(m+n)(m+n+1))
~ (m+n)( m+n—1 2 6

_<(m+n)(m+n+1) (2(m+n)+1)(m+n+1))

dm+n—1) 6(m+n—1)
_ B(m+n)+2)(m+n+1)
12

and
Var(R) = nE[R?] + n(n — 1)E[R1Ry] — E*[R)
:n(Z(m—i—n)—i—l)(m—i—n—i—l)
6
mn(m+n+1)
12

Bm+n)+2)(m+n+1) n*(m+n+1)32
12 - 4

+n(n—1)

6.2. Deriwation of moments using the Mann-Whitney U statistic

Note that in its Mann-Whitney form, finding the moments of U directly is fairly straightforward. The mean of
the sampling distribution for U under any hypothesis is easily found to be

where we use the fact that the X;’s are identically distributed and the Y;’s are identically distributed, as well as
the fact that the expectation of a binary indicator variable is just the probability that the event measured by the
indicator variable occurs. Under the strong null hypothesis that X and Y have the same distribution, Pr(X >Y) is
just the probability that the larger of two randomly sampled independent measurements from the same population
would have the first measurement larger than the second. So Pr(X >Y') = 0.5 under the null hypothesis, and

To find Var[U], we would again use Var[U] = E[U?] — E?[U]. And

n

=1 k=

n

D vl sy
14
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This can be most easily solved by considering cases where ¢ = k and j = ¢, where i = k but j # £, where i # k but
j =14, and where i # k and j # £. So

=2 2.0 > wevilweyvy ) > D lixevilxsy)
i=1 j=1 k=i t=j i=1 j=1 k=i (]
+ ZZZ Z Lxizy) x>y + Z ZZZ Lix, >y x>y
i=1 j=1 k#i =j i=1 j=1 k#i ££]
:ZZ [Xi>Y;) 2+2221X>Y]1X>Y[]

i=1j i=1 j=1 £#£]

—

n m

+ZZZZHX >Y]1[Xk>Y]+Zzzzlx>y]1xk>n]

i=1 j=1 k#i l=j i=1 j=1 k#i £#£j

Now, the square of an indicator function is just the indicator function, so the expectation of the first term is

Zz(lmzm)z =K ZZ x>y | = [U]:%.

i=1 j=1

Then, owing to the exchangeability of the X;’s and Y}’s, we find the expectation of the second term is

n m n m
ZZZ x>y lixosvg | = ZZZE x>y lxi>vy] = mn(m —1DE [1ix,5vi1x,>va) »

i=1 j=1 L#£j i=1 j=1 £#£j
with
E [1[X12Y1]1[X12Y2]] = PT(Xl Z YiaXl Z YQ)

Now under the null hypothesis that X and Y have the same distribution and the independence of X7, Y7, and
Y5, this is just equal to the probability that the largest of three randomly chosen measurements would be the first
measurement chosen. That is easily computed by considering all permutations of three distinct numbers. Each
permutation should be equally likely. There are 6 such permutations, and 2 of those permutations have the largest
value first, so

Zzzl[xizml[xizm :W'
i=1j=1 0#£]

Similarly, the expectation of the third term is

-1
ZZJ =1 Zl[x >vilx >y | = %

k#i
Owing to the exchangeability of the X;’s and Y;’s, we find the expectation of the fourth term is

n m

DYDY ixeevilixeew Z Z S Exsvlxsv] = mnn—1)(m—1)E [1ix,5vi)1xa>va)] »

i=1 j=1 ki L#£] 1 ki £#]
and the independence of X1, Y7, X5, and Y5 yields

n m

SIS xesvilixesva | =mn(m —1)(n = DE [1ix,5v]] B [1ix,5v4)]

i=1 j=1 ki £#£]

2 _ mn(m — 1)(n — 1).

:mn(m—l)(n—l) [P’I“(XZY)] 4
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We thus have
mn  mn(m—1) mnn-1) mn(m-—1)(n—1)

E[U?] = 5 T 3 + 3 + 1
_ 6mn + Am2n — dmn + 4mn? — 4mn + 3m2n? — 3mn? — 3m3n + 3mn
N 12
_ 3m2n? + mn? + m?n + mn
N 12 ’
S0 2,2 2 2 2,2
Var(U) = E[U?] — B2[U] = 3m?n +mn12+m n+mn m4n _ mn(mlJ;nJr 1)'

An alternative approach could have used the results from the rank sum null distribution. Then from the
relationship between U = R—n(n+1)/2 we can find the moments for the distribution of U under the null hypothesis
as (recall for random variable X and constant ¢, E[X + ¢] = E[X] 4 ¢ and Var(X + ¢) = Var(X))

nin+1) nim+n+1) nn+1l) mn
E[U] = E[R] — 5 = 5 - 5 =5
mn(m+n+1)
12

Var[U] = Var(R) =

6.3. Ezact distribution and permutation tests

In small samples (i.e., when either m or n is small), we can find the distribution of R exactly by brute force: We
can consider all the combinations of choosing n numbers out of the integers 1,2, ..., m+n, summing the numbers for
each of those combinations, and then finding the percentiles by noting that each such combination is equally likely.
In the absence of ties, the number of such combinations is known to be (m + n)!/(m!n!), which can get big pretty
quickly. Thus an alternative approach is by Monte Carlo methods. It should be obvious that the Wilcoxon rank
sum test is nothing more than a permutation test based on the ranks. Hence the following S-plus (or R) function
simWilcoxonP() given below would estimate the quantiles of the sampling distribution for R for data vectors x
and y. I also had it estimate the upper one-sided P value for the test. Note that this case handles ties, because it
permutes the possibly tied ranks of the observed data.

simWilcoxonP <- function (x, y, Nsim=10000,

prob=c(.01,.025,.05,.1,.25,.5,.75,.9,.95,.975,.99)) {
x <- x[!is.na(x)]
y <= y['is.na(y)]
n <- length(x)
ranks <- rank(c(x,y))
R <- sum(ranks[1:n])
N <- length(ranks)
indx <- runif (Nsim * N)
study <- rep(1:Nsim,rep(N,Nsim))
indx <- as.vector (
rep(1,n) %*% matrix( rep(ranks,Nsim) [order (study, indx)], N)[1:n,] )
list (RankSum= R, Pval = sum(indx >= R)/Nsim, Pctile = quantile (indx, prob), Nsim=Nsim)

}

6.4. Large sample approrimation to the sampling distribution under the strong null

Now, having the first two moments of the null sampling distribution for R is sufficient knowledge to construct
hypothesis tests if R has a normal distribution. While R is the sum of identically distributed random variables, it is
not the sum of independent random variables, and thus the usual central limit theorem will not work here. Instead,
we would need to use the central limit theorem for sampling without replacement from a finite population (there
does exist such a thing), which says that providing the number sampled n is sufficiently larger than 0 but sufficiently
small relative to the size m 4 n of the population, the sample average is approximately normally distributed. This
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in turn suggests that the sum of the ranks will tend to be normally distributed providing neither m nor n are too
small. In that case, we expect

. nm+n+1) mn(m+n+1)
RNN( 2 ’ 12 )

and a test statistic
R— n(m+n+1)

T = 2

mn(m+n—+1)
12

will tend to have the standard normal distribution under the null hypothesis that the distributions of X and Y are
the same. Thus a test could be constructed by comparing 7" to the percentiles of the standard normal distribution.

Using the Mann-Whitney formulation, we can also provide some intuitive motivation for the asymptotic distri-
bution of U. First, the mean of the sampling distribution for U under any hypothesis is easily found to be

EU) = B xv,

NE
.MS

7 1

1

I

M:

NE
e

[Lx.>v;]]

1

nE [1x,5v]
nPr(X >Y)

.
Il
<.
Il
—

[
3 3

where we use the fact that the X;’s are identically distributed and the Y;’s are identically distributed, as well as
the fact that the expectation of a binary indicator variable is just the probability that the event measured by the
indicator variable occurs.

It is clear that we can estimate Pr(X >Y') using

1 min(n,m)
U= ——— lix,>v,
min(n,m) ; [X:>Yi)
which is clearly based on independent Bernoulli random variables W; = 1x,~y, ~ B(1, Pr(X >Y)). We know that
the sample mean W = U* has an asymptotically normal distribution

WA'J./\/(PT(X EY),PT(XZY) (1-Pr(X >Y)))

min(n, m)
Then, because U = U/(nm) makes more efficient use of all of the data than W and weights all observations equally

(thereby avoiding undue influence from any single observation), it seems reasonable that the U will be approximately
normally distributed some tighter variance V

UAN(mnPr(X>Y),V).

In particular, V = mn(m +n + 1)/12 < mn/4 under the strong null hypothesis.
The quantiles of the null distribution for U are thus

1 N (m+n+1)

TN
P 12mn

Thus to perform a level o two-sided test for equality of the distributions of X and Y (the strong null hypothesis),

we might choose p =1 — /2 and reject the null hypothesis when

— 1 (m+n+1) — 1
U<§—Zp WOTU>§+ZP

(m+n+1)
12mn
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(recall that for the standard normal distribution, z, = —z1_,. This is equivalent to using the test statistic

ro_U—"

mn(m+n+1) ’
12

which is equivalent to the statistic defined above for the rank sum and can be compared to the quantiles of a standard
normal distribution.

6.5. Large sample approximation to the sampling distribution under alternatives

). Our first

More generally, we might want to use U to compute confidence intervals for § = Pr(X > Y
— a)% confidence

temptation might be to use the asymptotic distribution under the strong null to compute a 100(1
interval for 0 as
(m+n+1)

Ut zar2 12mn

The above formula assumes that the variance V of U does not change markedly as  varies and that the sampling
distribution under the strong null is relevant. However, as U is a sum of binary variables used to estimate a
probability, we might expect that V will be of the general form

_0(1-0)
~ h(n,m,0)

for some function h that will depend upon the exact shape of F' and G under each possible value of 6. In fact, it is
easy to show that V' =0 as 0 approaches 0 or 1.

It is therefore also of interest to explicitly consider the variance of the sampling distribution for U under
alternatives to the strong null hypothesis, i.e., under hypotheses in which the distributions for X and Y differ.

In our derivation of the variance of the Mann-Whitney U statistic, we found that the variance could be expressed
in terms of the distribution of independent Xy, X5 ~ F, Y7,Y5 ~ G. This can then be used to express the variance

of U as . .
Var(U) = —Pr(X; > Y1) + m=-1
mn mn

(n—1)

Pr(X:>Y,X; >Y5)

. (m+n-1)

Pr(X;>Y1,X,>Y,) — [Pr(X, > Y1),

We thus see that we would need to know for each such alternative § = Pr(X; > Y7) the probability that a randomly
chosen X might exceed the maximum of two independent observations of Y and the probability that the minimum
of two independent observations of X might exceed a randomly chosen Y. Without knowing more about the shapes
of the distributions, this will be difficult to express in general terms.

As suggested above, it is possible to estimate the variance of U under the true distributions for X and Y (which
may or may not be the same distribution) using bootstrapping within each group separately (as opposed to using a
permutation distribution). We will still be faced with the problem of knowing how the variance of U might change
under different alternatives. This is necessary in order to construct confidence intervals.

We can put an upper bound on Var(U) by noting that
Pr(X;>2Y)) > Pr(X; >2Y1,X, > Y) and  Pr(X;>Y)) > Pr(X; >2Y, X, >Y)).

Hence ) ) ) ) )
Var(@) < o4 M=y =Dy (min=lg, mtn=1,, ,
mn mn mn mn mn

One particularly interesting alternative to the strong null is the case where the weak null might be true, but the
strong null is not. In this case, § = 0.5, so the upper bound on the variance is

Var(U)<m+n_l— 1 1 1

dmn  4n | 4m dmn
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So then the question is whether any choices of F' and G will attain the upper bound.
Consider, then, the distribution in which
Y ~ G(y) = ylp<y<i) + Lp>)
X ~ F(z) = (x+0.5)1|_g5<e<0] T (* = 0.5)11coc1.5) + Lja>1.5-
(So Y is uniformly distributed between 0 and 1, and X is with probability 0.5 uniformly distributed between -0.5
and 1 and with probability 0.5 uniformly distributed between 1 and 1.5.) Under these probability distributions, the
event [X; > Y7] is exactly the same as the event [X; > 1]. Hence
Pr(X;>Y))=Pr(X; >1)=0.5
Pr(X; >Y, X1 >Y:)=Pr(X;>1)=05
PrX; >V, Xe>2Y))=Pr(X;>1,X2>1)=0.25

In this setting, then,

— 1 -1
VCLT(U) = %P’F(Xl Z Yi) + (mmn )PT(Xl Z Y17X1 Z YQ)
-1 -1
L) px s v x> 1) = Y o s 2
mn mn
_ 1 N (m—1) N (n—-1) (m+n-1)
2mn 2mn dmn dmn
1
" 4n

Note that as min(m,n) — oo with m/n = r large, the upper bound on the variance of U under the weak null can be

arbitrarily close to 1/(4n), so the upper bound on Var(U) given above is a tight upper bound in general, though it
may not be tight for arbitrary values of r.

6.5. Statistical properties of tests based on the Mann-Whitney U statistic

From the above results about the moments and sampling distribution we know
e U is an unbiased distribution-free (nonparametric) estimator of § = Pr(X >Y).
e A test of the strong null Hy : F(z) = G(x), Va based on

U-05
reject Hy & T =——m=>21_4,

[ mEnt1l
12mn
where z1_, is the upper « quantile of the standard normal distribution, is a one-sided level « test as min(m,n) —

Q.

e The above test based on T is not an unbiased test of the strong null hypothesis. (An unbiased test would always
have Pr(reject Ho | F,G ¢ Hy) > Pr(reject Hy | F,G ¢ Hp).) To see this, consider the setting described in the
previous section in which

Y~ G(y) = ylpcy<y) + Ly>y
X ~ F(z) = (z+ O-5)1[—0.5<ac<0] +(z — 0'5)1[1<x<145] + 1{;2145}-
Clearly, these distributions do not satisfy the strong null distribution, because F'(z) # G(z) Yz # 0.5. In the

previous section, we found that under these distributions U ~ A (#,1/(4n)) as n — oo. Hence, under these
distributions with

U—-05 U—-0.5 m+n-—1
>2zi_oq | = Pr > Z1—a

m+n+1 1 3m
12mn 4n

_ _q>< m+n—121a>.
3m

Pr(T > z1_q) = Pr
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If n > 2m+1, the probability of rejecting the null hypothesis is less than «. Hence, there exist some alternatives
(and settings) for which the probability of rejecting the null is less than .

e The above test based on T is not a consistent test of the strong null hypothesis. (A consistent test would have
Pr(reject Ho | F,G ¢ Hy) — 1 as min(m,n) — oo0.) To see this, consider again the setting described in the
previous section in which F' # G and

—1
PHT > 2. =1 ( m+) .
3m

If n = 2m + 1, the probability of rejecting the null hypothesis is @ < 1, regardless of how large min(m,n)
becomes. Hence, there exist some alternatives for which the probability of rejecting the null does not approach
1 asymptotically.

e The above test based on T is not a level « test of the weak null hypothesis Hy : § = 0.5. To see this, consider
again the setting described in the previous section in which # = 0.5 and

-1
Pr(T>z2_q)=1—-0 ( m+n21a> .

3m

If n # 2m + 1, the probability of rejecting the null hypothesis is not «. Note that the test is anti-conservative
(has a type I error greater than «) if n < 2m + 1, and it is conservative (has a type I error less than « if
n>2m+ 1.

e The above test based on T is a consistent test of the weak null hypothesis Hq : 6 = 0.5 versus an upper alternative
H; : 6 > 0.5. To see this, note that as min(m,n) — oo, U ~N(0,V) with

1 (m—1)

—1
VS‘/IJound: 0+ mrn
mn

—1 -1
g n=Dy (mAn=1g 6(1—0).
mn mn mn mn

So, as min(m,n) — 00, Viounda — 0, and thus V' — 0. Hence,

_ pr( U—9> /m+n+1z _6-05
B VV 12mnV ¢ VvV

IA

of [mEREl_ 6-05
12mn‘/bound e \/V
m+n+1 0—0.5
—1-® W2 S1as v oo,
(¢HWH4%JW@—@A V@->% as V=0

where ®(z) is the cumulative distribution function for the standard normal.

7. Interpretation of test in terms of marginal distributions of X and Y

Many people are under the erroneous impression that the Wilcoxon rank sum test is somehow a nonparametric
test of the median. This is not the case. Nor is it a nonparametric test of the mean. Instead for a two sample test of
random variables X and Y, it is, as the Mann-Whitney form would suggest, a test of whether the Pr(X >Y) > .5
for independent randomly sampled X and Y. Note:
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1.

This will be true if X is “stochastically larger” than Y. X is “stochastically larger” than Y if Pr(X > ¢) >
Pr(Y > ¢) for all ¢. In such a setting we will also have that E[X] > E[Y] and mdn(X) > mdn(Y).

This can be true when X is not stochastically larger than Y. For instance, suppose ¥ ~ U(0,1) a uniform
random variable and X ~ A/(1,1) a normally distributed random variable. Then

e Pr(X >0)=.84is less than Pr(Y > 0) =1,
e but .
Pr(X>Y) :/ PrX>Y|Y =u)du
0

:/OILOO\/%eXp{—(x;lV} dz du
:/Ollool\/%exp{—x;} dz du

/01/:)1\/127-6)(1){“%22} dxdu+0.5
—/Ol;rexp{x;}/oﬁl dudz + 0.5

0 1 x?
= +1)—— —— > dxr+0.5
/_1(‘” )me}‘p{ 2} !

0 2
1
= x exp{—g} dx +0.8413

——(—1+4¢e%%) 4+ 0.8413 = 0.6844
v :

3. This can be true when the median of X is less than the median of Y. For instance, suppose that for some

a<b<e<d

Pr(Y <y) = pylio<y<i) + Ply>1 + (¥ — 2)(1 = p)lja<y<s) + (1 = p) 13
(x —a)

2) La<a<t) +71losp) + (@ = )(1 = 1)1 ecoca + (1 = 7)1psq

PrX <z)= T(bf

These distributions correspond to Y being uniformly distributed between 0 and 1 with probability p and uni-
formly distributed between 2 and 3 with probability 1 — p, and X being uniformly distributed between a and b
with probability » and uniformly distributed between ¢ and d with probability 1 — 7.

e The mean of Y is easily found to be E[Y] = 0.5p + 2.5(1 — p) = 2.5 — 2p, and the mean of X is
EX]|=r(a+b)/2+ (1 —=r)(c+d)/2.

e The median of Y is mdn(Y) = 0.5/p if p > 0.5 and mdn(Y) = 2+ (0.5 —p)/(1 —p) if p < 0.5. The
median of X is mdn(X) =a+ (0.5/r)(b —a) if r > 0.5 and mdn(X) =c+ (0.5 —r)(d — ¢)/(1 —r) if
r < 0.5.

Now suppose that we take 1 <a<b<2and 3 <cand p=0.4and r =0.7. Then

e Neither X nor Y is stochastically larger than the other, because Pr(X > 1) =1 > Pr(Y > 1) =
l—-p=6,but Pr(X>2)=1—-r=3<PrY >2)=.6.

e With a sufficiently large sample size, the Wilcoxon test would suggest that X tends to be larger than
Y, because

PriX>Y)=Pr(X>1)Pr(Y <)+ Pr(X>3)Pr(Y >2)=p+(1—-r)(1—-p)=1—71+rp,

which for choices p = 0.4 and r = 0.7 yields Pr(Y > X) = 0.58
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e The median of Y is mdn(Y) = 2.167. Then, for appropriate choices of 1 < a < b < 2, we can make
mdn(X) arbitrarily close to any number between 1 and 2. In particular, if we choose a = 1 and b = 2,
mdn(X) = 1.714. So with a sufficiently large sample size, using the differences in medians would tend
to suggest that Y tends to be larger than X, because mdn(Y') = 2.167 > mdn(X) = 1.714.

e The mean of Y is E[Y] = 1.7. For the choices r = 0.7, a = 1, b =2, and ¢ > 3, E[X] = 1.05 + 0.3 x
(c+d)/2 > 1.95. So with a sufficiently large sample size, using the differences in means would tend to
suggest that X tends to be larger than Y.

So clearly the Wilcoxon test cannot in general be interpreted as evidence about the medians.

4. The Wilcoxon can also tend to suggest that X tends to be larger than Y when F[X] < E[Y]. We use the same
distribution as above, with »r = 0.7, p=0.4,a =1, b = 1.01, ¢ = 3, and d = 3.01. Then

e Neither X nor Y is stochastically larger than the other, because Pr(X > 1) =1 > Pr(Y > 1) =
l—-p=6,but Pr(X>2)=1—-r=3<Pr(Y >2)=..

e With a sufficiently large sample size, the Wilcoxon test would suggest that X tends to be larger than
Y, because

Pr(X>Y)=Pr(X>1)Pr(Y <1)+Pr(X >3)Pr(Y >2)=p+(1—-r)1—-p)=1—-7r+rp,

which for choices p = 0.4 and r = 0.7 yields Pr(Y > X) = 0.58

e The median of Y is mdn(Y) = 2.167, and the median of X is mdn(X) = 1.007. So with a sufficiently
large sample size, using the differences in medians would tend to suggest that Y tends to be larger than
X, because mdn(Y) = 2.167 > mdn(X) = 1.007.

e The mean of YV is E[Y] = 1.7, and EF[X] = 1.605. So with a sufficiently large sample size, using the
differences in means would tend to suggest that Y tends to be larger than X.

So clearly the Wilcoxon test cannot in general be interpreted as evidence about the means.

5. It should be noted that it is possible to also find settings in which Pr(X >Y) > 0.5, mdn(X) > mdn(Y), and
E(X) < E(Y). That is, it is possible to find distributions that match any pattern of concordance or discordance
among these three functionals with respect to the implied ordering of distributions.

8. Intransitivity of Pr(X >Y)

The bivariate functional § = Pr(X >Y') can be shown to be intransitive. That is, given X ~ F|Y ~ G, and
W ~ H, defined by

Y ~ G(y) = ylp<y<1) + Liy>y
X ~ F(z) = (2 +2)l[—ococ—1.6) T (= 0.6)1[1coc16) + Lz>1.6)
W ~ H(w) = (w+ 1'6)1[—1.6<w<—1] + (w — 1)]—[1.6<w<2] + Ljw>2)-

Then we have that
e Pr(X >Y)=0.6>0.5 (implying X tends to be larger than Y")
e Pr(Y >W)=0.6>0.5 (implying Y tends to be larger than W)
e Pr(W > X) =0.64 > 0.5 (implying W tends to be larger than X)

9. Some results on relative efficiency of the Wilcoxon rank sum and t tests

Many authors have reported on the efficiency of the Wilcoxon rank sum test relative to efficiency of the t
test. Unfortunately, these results are almost always presented within the context of a parametric or semiparametric
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probability model. What makes it worse is that those results are almost always based on the location shift semipara-
metric model. Hence, those generally impressive efficiency results do not necessarily generalize to fully nonparametric
settings.

In considering the relative merits of the Wilcoxon rank sum test and the t test, it should be noted that we
are comparing nonparametric (distribution-free) estimators of 6y = Pr(X >Y) and 6y = E[X] — E[Y]. For some
families, these estimators may also be the parametric efficient estimates of those functionals.

The following subsections use particular parametric models to compare the estimated statistical power of the
Wilcoxon and the t test that allows unequal variances to detect various alternatives, as well as an estimate of
the relative efficiency of the two tests under those alternatives. (Estimates are based on simulations.) The relative
efficiency can be thought of as the proportionate decrease or increase in the sample size for a t test that would provide
the same power as the Wilcoxon test that had 100 subjects in each treatment arm. Hence, a relative efficiency of
0.95 suggests that a t test with 95 subjects per group would have the same power as a Wilcoxon test that had 100
subjects per group. A relative efficiency of of 1.24 suggests that a t test with 124 subjects per group would have the
same power as a Wilcoxon test that had 100 subjects per group.

9.1. Normal distribution with homoscedasticity

We consider a parametric family in which (without loss of generality) X ~ AN(6,1) and Y ~ AN(0,1). This
parametric family is a subset of a location shift semiparametric family.

In this family, the efficient estimator of 6 is or = X - Y. Hence, the t test that presumes equal variances
will be the optimal inferential strategy, and in this balanced setting (m = n = 100) the t test that allows for the
possibility of unequal variances will be essentially equivalent. The efficient estimator of fy, would be the parametric
estimator based on Pr(N (X, s%) > N (Y,s%)). The distribution-free estimator U will not therefore be efficient.

The following table provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can be
seen from these data (which agree well with, for instance, Lehmann’s Nonparametrics: Statistical Methods Based on
Ranks), the Wilcoxon rank sum test is approximately 90-95% efficient in this parametric model.

Table 9.1
Power and Relative Efficiency of Wilcoxon and t Tests
in a Parametric Normal Location Shift Model

Power to Detect Alternative Relative
0w =Pr(X >Y) 0r = E[X] — E[Y] Wilcoxon t Test Efficiency
0.500 0.00 0.026 0.027 NA
0.529 0.10 0.104 0.103 1.021
0.556 0.20 0.279 0.292 0.943
0.585 0.30 0.549 0.560 0.975
0.611 0.40 0.780 0.806 0.937
0.639 0.50 0.934 0.944 0.955
0.663 0.60 0.985 0.989 0.947

9.2. Exponential distribution

We consider a parametric family in which (without loss of generality) X ~ £(6) and Y ~ &£(1), where we have
parameterized the exponential distribution such that F[X]| = 6 and E[Y] = 1. This parametric family is a subset of
both the accelerated failure time (scale) and the proportional hazards semiparametric families.

In this family, the efficient estimator of 6 is 6r = X —Y. The distribution of the sample means would be
related to a gamma distribution, but owing to the central limit theorem, 61 is approximately normally distributed
with a variance that depends upon 6 and the distribution of Y. The t test that allows for the possibility of unequal
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variances would be the typical choice here, but it will not be the most efficient choice, because it does not explicitly
consider the mean-variance relationship. (The most efficient test of the strong null would use 5%, for both groups, as
it would estimate the correct within group variance under the null hypothesis.)

The efficient estimator of §y; would be the parametric estimator based on Pr(€(X) > £(Y)). The distribution-
free estimator U will not therefore be efficient.

The following table provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can be seen
from these data, the Wilcoxon is less efficient (70% to 80%) than the t test in this parametric model. (I note that

if in the t statistic we use an estimated standard error of sy +/1/n + 1/m instead of \/s% /n + s3-/m, the efficiency
advantage of the t test is even more pronounced: The Wilcoxon is only about 50% as efficient as a test of means.)

Table 9.2
Power and Relative Efficiency of Wilcoxon and t Tests
in a Parametric Exponential Scale Model

Power to Detect Alternative Relative
0w =Pr(X >Y) 0r = E[X] — E[Y] Wilcoxon t Test Efficiency
0.501 0.00 0.026 0.024 NA
0.526 0.10 0.091 0.111 0.722
0.556 0.30 0.274 0.355 0.733
0.588 0.40 0.580 0.691 0.773
0.625 0.70 0.873 0.932 0.809
0.667 1.00 0.989 0.994 0.894
0.714 1.50 1.000 1.000 1.032

The results presented in the above table are seemingly at odds with the 3-fold greater efficiency reported for the
Wilcoxon test over the t test reported in Lehmann’s Nonparametrics: Statistical Methods Based on Ranks). And one
has to wonder at Lehmann’s results, given the optimality of the sample mean in the exponential distribution and
the implications of the central limit theorem.

The seeming paradox is resolved by closer examination of the setting in which Lehmann examined the exponential
distribution: He considered a location shift semiparametric model in which Y ~ £(1) and X — 6 ~ Y. This setting
is considered in the next section.

9.83. Shifted exponential distribution

We consider a parametric family in which (without loss of generality) Y ~ £(1) and X — 6 ~ £(1), where we
have parameterized the exponential distribution such that E[X] = 6 and E[Y] = 1. This parametric family is called
a “shifted exponential” and is a subset of location shift semiparametric family. (In the most general case of shifted
exponential family, there are two parameters: a shift and a scale. However, we are trying to duplicate Lehmann’s
results, and he used a simple location shift model.)

In this family, the maximum likelihood estimator of 81 is the difference of the sample minima éM e = Xq) —
Yq) = min{Xy,..., X,} —min{Y3,...,¥,}. Owing to the changing support of the distributions as 6 varies (that
is, the set of possible values of X depends upon ), the asymptotic results about efficiency of maximum likelihood
estimators does not apply to this problem. Nevertheless, it is easily shown that OpLe is an n-consistent, with
n(@ye —0) ~ E(1) (note that this “asymptotic” distribution is actually exact).

Hence, the difference in sample means 67 = X — Y is a highly inefficient estimate of . The distribution of the
sample means would be related to a gamma distribution, but owing to the central limit theorem, Or is approximately
normally distributed with a variance that depends only upon the sample sizes and the distribution of Y. The t test
that allows for the possibility of unequal variances would be the typical choice here, but it will not be the most
efficient choice, because under this location shift model, the variances are equal.
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The efficient estimator of y = Pr(X >Y) =1 — 0.5¢~? would be the parametric estimator éWmle =1-
0.5e~%vre  The distribution-free estimator éW = U will not therefore be efficient.

The following table provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can be seen
from these data, the Wilcoxon is more efficient (2 to 2.5 fold) than the t test in this parametric model. However,
both of these statistics are exceedingly inefficient to detect a difference in distributions within this parametric family.
Using a test based on the maximum likelihood estimator, a difference in means of 0.10 could be detected with
approximately 25% power with a sample size of 28 in each group (compare the Wilcoxon test’s power of 22% with
the sample size of 100 in each group) and with approximately 11% power with a sample size of 26 in each group
(compare the t test’s power of 11% with a sample size of 100 in each group). As Lehmann acknowledges, the relevance
of comparing the Wilcoxon to the t test in this parametric family in practice is highly questionable.

Table 9.3
Power and Relative Efficiency of Wilcoxon and t Tests
in a Parametric Shifted Exponential Model

Power to Detect Alternative Relative
0w = Pr(X >Y) 0r = E[X] — E[Y] Wilcoxon t Test Efficiency
0.501 0.00 0.026 0.025 NA
0.548 0.10 0.217 0.111 2.525
0.590 0.20 0.597 0.291 2.444
0.630 0.30 0.898 0.575 2.253
0.665 0.40 0.987 0.810 2.160
0.697 0.50 0.999 0.941 2.089
0.728 0.60 1.000 0.990 1.990

9.4. Lognormal distribution

We consider a parametric family in which (without loss of generality) X ~ LN (w,1) (so log(X) ~ N(w,1))
and Y ~ LN(0,1) (so log(Y) ~ AN(0,1)). This parametric family is a subset of the accelerated failure time (scale)
semiparametric family.

In this family, the efficient estimator of O = e“0-5 — 05 is f = exp {log(X) + 5% /2} —exp {log(Y) + 5%,/2}

Hence, the nonparametric estimator 67 is not efficient. Owing to the central limit theorem, 61 is approximately
normally distributed with a variance that depends upon 6 and the distribution of Y. However, because these
lognormal distributions are heavily skewed, the approximation provided by the CLT is not good in very small
samples.

The efficient estimator of f would be the parametric estimator based on Pr(LN (X, s%) > LN (Y,s%)). The
distribution-free estimator U will not therefore be efficient.

The following table provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can be seen
from these data, the Wilcoxon is much more efficient than the t test in this parametric model. This is in keeping
with the oft quoted statement that the Wilcoxon will out perform the t test in distributions with heavy tails.

Table 9.4
Power and Relative Efficiency of Wilcoxon and t Tests
in a Parametric Lognormal Scale Model

Power to Detect Alternative Relative
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0w =Pr(X >Y) Or = E[X] — E[Y] Wilcoxon t Test Efficiency
0.499 0.00 0.023 0.023 NA
0.529 0.20 0.103 0.082 1.510
0.558 0.40 0.289 0.187 1.720
0.585 0.60 0.547 0.366 1.649
0.612 0.80 0.788 0.552 1.742
0.637 1.10 0.929 0.724 1.798
0.665 1.40 0.987 0.861 1.903

9.5. Shifted t distributions

We can further explore the effect of heavy-tailed distributions within the family of shifted t distributions. t
distributions are parameterized by a parameter k measuring the degrees of freedom. As k — oo, the t distribution
converges to a standard normal distribution, in which setting the Wilcoxon test was found to be approximately
90-95% efficient. The case k = 1 corresponds to a Cauchy distribution, which is of particular interest because it has
no mean. Similarly, the case of a t distribution with £ = 2 has no variance. In these two cases, the t test is not
asymptotically valid, but the Wilcoxon test is. Hence, the relative efficiency of the Wilcoxon test is infinite for these
two lowest values of k.

We explore a few other t distributions below. We consider a parametric family in which (without loss of
generality) Y ~ (k) for a specific value of k > 2 and X — 0 ~ Y. This parametric family is a subset of the location
shift semiparametric family.

The following table provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can be
seen from these data, the Wilcoxon is much more efficient (1.8 - 2 fold) than the t test in this parametric model
with heavy tails (k = 3), approximately 10% more efficient with moderately heavy tails (k = 7), and approximately
equally efficient when k = 19.

Table 9.5
Power and Relative Efficiency of Wilcoxon and t Tests
in a Parametric Shifted t Model

Power to Detect Alternative Relative
0w =Pr(X >Y) Or = E[X] — E[Y] Wilcoxon t Test Efficiency
k=3
0.501 0.00 0.026 0.025 NA
0.547 0.20 0.208 0.129 1.912
0.591 0.40 0.607 0.379 1.823
0.633 0.60 0.910 0.686 1.822
0.675 0.80 0.994 0.890 1.952
0.713 1.00 1.000 0.983 1.866
0.748 1.20 1.000 0.999 1.829
k=T
0.500 0.00 0.025 0.025 NA
0.525 0.10 0.090 0.083 1.158
0.551 0.20 0.235 0.224 1.061
0.574 0.30 0.440 0.426 1.040
0.600 0.40 0.688 0.646 1.101
0.625 0.50 0.873 0.847 1.081

0.653 0.60 0.970 0.954 1.115
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k=19
0.500 0.00 0.026 0.026 NA
0.528 0.10 0.099 0.105 0.915
0.556 0.20 0.274 0.275 0.995
0.579 0.30 0.489 0.508 0.951
0.609 0.40 0.763 0.766 0.993
0.634 0.50 0.915 0.918 0.989
0.659 0.60 0.980 0.980 1.004

9.6. Mixture distributions

In the preceding sections, we have explored the relative efficiency of the Wilcoxon and t tests under several simple
shift alternatives. In the normal and shifted t probability models, the support of the distribution was (—oo, co) for all
alternatives. We found that relative to the t test, the Wilcoxon test was 90-95% efficient for the normal distribution,
with increasing relative efficiency as the heaviness of the tails increased. A t distribution with & = 19 degrees of
freedom had the t test and Wilcoxon test approximately equally efficient, and a t distribution with & = 3 degrees of
freedom had the Wilcoxon approximately twice as efficient. With & = 1 or 2, the Wilcoxon is infinitely more efficient
than the t test, because those heavy tailed distributions have no variance.

We also explored a shifted exponential distribution in which the support of the distribution varies with the value
of 0y = E[X] — E[Y]. In that parametric family of distributions, the Wilcoxon was found to be 2 - 2.5 times more
efficient than the t test. We can also consider the effect that heavier tails has on the relative efficiency of these two
tests in the setting of changing support. We observe the same trend of increased relative efficiency of the Wilcoxon as
the tails become increasingly heavy, but with the Wilcoxon having the advantage with lighter tails when the support
changes that it does under common support:

e In the setting of a uniform distribution (which distribution has lighter tails than the normal distribution) with
Y ~ U(0,1) and X — 0 ~ Y, the Wilcoxon is 90-95% as efficient as the t test.

e In the setting of a shifted folded normal distribution (so Y ~ |N(0,1)|, the absolute value of a standard normal
random value and X — 60 ~ Y, the Wilcoxon is 1.2 - 1.3 times as efficient as the t test.

o In the setting of a shifted folded t distribution with & = 19 degrees of freedom (so Y ~ |t(k)|, the absolute value
of a t distributed random value and X — 6 ~ Y, the Wilcoxon is 1.3 - 1.4 times as efficient as the t test.

e In the setting of a shifted folded t distribution with & = 7 degrees of freedom (so Y ~ |t(k)|, the absolute value
of a t distributed random value and X — 6 ~ Y, the Wilcoxon is 1.5 - 1.7 times as efficient as the t test.

o In the setting of a shifted folded t distribution with & = 3 degrees of freedom (so Y ~ |t(k)|, the absolute value
of a t distributed random value and X — 6 ~ Y, the Wilcoxon is 3 - 3.5 times as efficient as the t test.

We also explored two probability models in the family of accelerated failure time models. With the exponential
distribution, the Wilcoxon was approximately 70-90% as efficient as the t test, while in the more heavily skewed
lognormal distribution, the Wilcoxon test was 1.5 - 1.9 times more efficient than the t test.

It is also of interest to explore some parametric models mimicking a scientific setting in which only patients in a
nonidentifiable subset are susceptible to the effects of the treatment. We thus consider a model in which Y ~ N(0,1)
and the distribution of X depends upon what the corresponding individuals (counterfactual) value of Y would have
been. That is, we consider distributional parameters (m,7n,w) and latent normal random variable Z; ~ N(0,1)
and latent Bernoulli random variable W; ~ B(1,7). We then let X; = Z; + wlig(z,)>n 1w ,=1]- (A corresponding
untreated patient would have Y; = Z;.)

This mimics the setting in which the patients from the population having the lowest 100n% values of Z; receive
no benefit of treatment (so n models non-susceptibility to the treatment that is related to severity of disease), while
the patients in the upper 100(1 — 7) percentile of the distribution have a benefit w of treatment with probability =
(so ™ models susceptibility to the treatment that is unrelated to the counterfactual value of outcome in the absence
of treatment). Using such a model thus constitutes a mixture of parametric distributions.

The following table provides estimates of the statistical power of the Wilcoxon and t tests to detect various
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alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can be seen
from these data, the Wilcoxon is less efficient than the t test in these particular mixture models considered here.
It should be noted that for fixed sample size in these mixture models, the Wilcoxon hits an upper bound on the
possible power no matter how the mean changes. This is because the mixture model places an upper bound on the
magnitude of y = Pr(X >Y).

Table 9.6
Power and Relative Efficiency of Wilcoxon and t Tests
in a Parametric Mixture Model

Power to Detect Alternative Relative
0w =Pr(X >Y) Or = E[X] — E[Y] Wilcoxon t Test Efficiency

Complete non-susceptibility n = 0, Probability of benefit among remainder 7 = 0.5

0.500 0.00 0.024 0.024 NA
0.529 0.10 0.104 0.111 0.898
0.557 0.20 0.280 0.284 0.983
0.582 0.30 0.516 0.544 0.934
0.607 0.40 0.750 0.770 0.954
0.628 0.50 0.889 0.911 0.925
0.650 0.60 0.965 0.973 0.936
Complete non-susceptibility n = 0, Probability of benefit among remainder = = 0.25
0.503 0.00 0.028 0.027 NA
0.534 0.12 0.129 0.137 0.914
0.565 0.25 0.349 0.389 0.878
0.589 0.38 0.585 0.673 0.814
0.607 0.50 0.748 0.860 0.746
0.614 0.62 0.803 0.937 0.649
0.624 0.76 0.869 0.977 0.605
Complete non-susceptibility n = 0.5, Probability of benefit among remainder = = 0.5
0.502 0.01 0.027 0.028 NA
0.524 0.10 0.083 0.095 0.784
0.541 0.20 0.172 0.252 0.616
0.552 0.30 0.249 0.439 0.505
0.560 0.41 0.313 0.633 0.410
0.561 0.50 0.316 0.755 0.313
0.560 0.55 0.316 0.802 0.278
Complete non-susceptibility n = 0.5, Probability of benefit among remainder = = 0.25
0.500 0.00 0.025 0.025 NA
0.522 0.12 0.080 0.121 0.492
0.532 0.25 0.120 0.320 0.276
0.530 0.37 0.109 0.501 0.137
0.531 0.50 0.115 0.647 0.106
0.531 0.62 0.116 0.740 0.086
0.531 0.75 0.117 0.803 0.075
0.531 0.88 0.115 0.843 0.066

It should be noted that the results presented in this section are related to results that have been explored in the
setting of weighted logrank statistics and censored time to event analyses. The Wilcoxon form of the logrank statistic
is well-known to have greater power than the logrank statistic under alternatives that lead to “early differences”
survival distributions. Hence, those models that had varying support corresponded to such early differences, and



Biost 514: Notes on Wilcoxon (v2009.11.28) Emerson, Page 24

the mixture models in this section tended to lead to “late differences”, especially when the probability of complete
non-susceptibility was n = 0.5. The unweighted logrank statistic is generally preferred to the Wilcoxon from in the
setting of “late differences” in the survival curves.

In the setting of time to event analyses, the difference in means corresponds to the area between to survival
curves.

10. Implications for Parametric and Semiparametric Analyses

In the preceding sections, I have criticized the evaluation and use of the Wilcoxon rank sum statistic on multiple
grounds:

o (Science) The functional of the distribution that the Wilcoxon consistently tests, Oy = Pr(X > Y'), does not
provide any information about the scientific or clinical importance of the magnitude of differences in outcomes.

o Arguably, the same could be also be said about such functionals as mean ratios, median ratios, odds ratios,
and hazard ratios, as the scientific importance might be more related to differences of univariate functionals.

e (Science) The functional of the distribution that the Wilcoxon consistently tests, 8y = Pr(X >Y), does not
provide a transitive ordering of populations.

o This property is shared by all functionals that cannot be expressed as a contrast of univariate functionals.
Hence, the median difference (e.g., sign test) or mean ratio of paired observations, the maximal distance
between two cumulative distribution functions (e.g., Kolmogorov-Smirnov test), and even the usual com-
putation of a hazard ratio (due to the weighting of estimated hazards at observed failure times in Cox
proportional hazards) can be shown to also be intransitive.

e (Statistics) The null sampling distribution is computed under the strong null hypothesis. The resulting test is
neither unbiased nor consistent as a test of the strong null in a distribution-free sense.

o This drawback is shared, at least in part, by any inference about the strong null hypothesis using a statistic
that is consistent for a particular functional of the probability distributions, if that null value does not
uniquely indicate the strong null hypothesis in a distribution-free environment. Most commonly used
parametric and semiparametric analysis models are based on some functional 6 and define a null value such
that when F' = G within the presumed distributional family, 8 = 6. Furthermore, within the parametric or
semiparametric family, there is a constraint that if 8 = 6y, then F' = G. Yet in most such analysis models,
outside the parametric or semiparametric model, § = 6y does not necessarily imply F' = . For instance,
the t test that presumes equal variances will asymptotically reject the null hypothesis with probability equal
to the type I error whenever the means and variances are equal across the two groups. It is of course trivial
to find X ~ F and Y ~ G such that E[X] = E[Y], Var(X) = Var(Y), but F(x) # G(z) for some x. (The
two-sample parametric binomial probability model is a notable exception to this drawback, because it is a
one parameter family and the sum of independent binary variables must be binomial.)

e (Statistics) The null sampling distribution is computed under the strong null hypothesis. The resulting test is
not necessarily of the right size under distributions satisfying the weak null hypothesis.

o Again, this drawback is shared, at least in part, by most of the commonly used parametric and semipara-
metric analysis models. For instance, the t test that presumes equal variances is asymptotically of the
nominal level under the weak null only if either the variances are equal or the sample sizes in the two groups
are equal.

e (Science) In light of the two previous results, rejection of the null hypothesis using the Wilcoxon statistic can
only validly be interpreted as a difference in distributions, not as a difference in location.

e (Statistics) Because the operating characteristics of the Wilcoxon statistic have generally been evaluated in
restrictive parametric and semiparametric settings, the generalization of those efficiency results are not clear.

I note that it is frequently the case that the historical development of useful statistics has involved a derivation
of the statistic in the confines of a parametric or semiparametric model, and then the evaluation of the robustness
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of the inference in a distribution-free setting. Often that further evaluation leads to relatively minor modifications
of the statistic that yields valid, unbiased, and consistent testing of a weak null hypothesis. Such tests can then
often be inverted to obtain robust confidence intervals for a scientifically meaningful functional of the probability
distribution.



