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Lecture Outline

• Comparing Independent Proportions
– Large Samples (Uncensored)

• Chi Squared Test
– Small Samples (Uncensored)

• Fisher’s Exact Test
• Adjusted Chi Squared or Fisher’s Exact Test

3

Comparing Independent 
Proportions

Large Samples (Uncensored)

4

Summary Measures

• Comparing distributions of binary variables 
across two groups
– Difference of proportions (most common)

• Most common
• Inference based on difference of estimated 

proportions
– Ratio of proportions

• Of most relevance with low probabilities
• Often actually use odds ratio
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Data: Contingency Tables

• The cross classified counts
Response
Yes    No |  Tot

Group   0      a     b |   n0
1      c     d |   n1

Total          m0 m1 |   N

6

Large Sample Distribution

• With totally independent data, we use the 
Central Limit Theorem
– Proportions are means

• Sample proportions are sample means
– Standard error estimates for each group’s 

estimated proportion based on the mean –
variance relationship

7

Asymptotic Sampling Distn

• Comparing two binomial proportions
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Asymptotic Confidence Intervals

• Confidence interval for difference between 
two binomial proportions
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Asymptotic Hypothesis Tests

• Test statistic for difference between two 
binomial proportions

( )

( )
1001

0

010

ˆ       with)ˆ1(ˆ)ˆ1(ˆˆ  Estimate

so equal are onsdistributi entire  theUnder 

)1,0(~ˆ
ˆ

   Z,hypothesis null Under the

0: test  want to weSuppose

nn
YXp

n
pp

n
ppse

H

N
se

ppH

+
+

=
−

+
−

=∆

∆
∆

=

=−=∆

&

10

Goodness of Fit Test

• An alternative derivation of the asymptotic 
test of binomial proportions as a special 
case of the “goodness of fit test”
– For contingency tables of arbitrary size

• “R by C” table
• E.g., tumor grade by bone scan score in PSA data 

set

11

Goodness of Fit Test

• Given categorical random variables, we 
often have scientific questions that relate 
to the frequency distribution for the 
measurements
– Examples:

• Checking for Poisson, normal, etc.
• Distribution of phenotypes to agree with genetic 

theory
• Comparing distributions of categorical data across 

populations
• Independence of random variables

. tabulate grade bss, row col cell
|               bss

grade |         1          2          3 |     Total
1 |         1          3          6 |        10 

|     10.00      30.00      60.00 |    100.00 
|     20.00      27.27      25.00 |     25.00 
|      2.50       7.50      15.00 |     25.00

2 |         2          4          9 |        15 
|     13.33      26.67      60.00 |    100.00 
|     40.00      36.36      37.50 |     37.50 
|      5.00      10.00      22.50 |     37.50

3 |         2          4          9 |        15 
|     13.33      26.67      60.00 |    100.00 
|     40.00      36.36      37.50 |     37.50 
|      5.00      10.00      22.50 |     37.50

Total |         5         11         24 |        40 
|     12.50      27.50      60.00 |    100.00 
|    100.00     100.00 100.00 |    100.00 
|     12.50      27.50      60.00 |    100.00
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Aside: Sampling Nomenclature

• We often characterize the sampling 
scheme according to the total counts that 
were fixed by design

• Poisson sampling: none
• Multinomial sampling: total counts
• Binomial sampling: either row or column totals
• Hypergeometric sampling: both row and column 

totals

14

Basic Idea

• We compare the observed counts in each 
cell to the number we might have 
expected
– “Observed – Expected”
– Counts, NOT proportions

15

Sampling Distribution

• The test to see whether the data fits the 
hypotheses (hence “goodness of fit”)
– Observed counts in each cell are assumed to 

be Poisson random variables
• Standard error is the square root of the mean

– Test statistic based on sum of Z scores for 
each cell

• Actually done as squared Z scores
• Sum of squared normals has a chi squared distn

16

Test Statistic

• Pearson’s chi-square goodness of fit 
statistic in the general case
– Assuming only one “constraint” on the cells
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Determining the “Expected”

• The scientific null hypothesis usually 
specifies the probability that a random 
observation would belong in each cell
– Most often:

• Testing independence of variables
– Probabilities in each cell are expected to be the product 

of the marginal distributions

– Other uses
• Testing “goodness of fit” to distributions
• Testing agreement with genetic hypotheses

18

Test for Independence

• Chi-square test for independence (or 
association)
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. tabulate grade bss, row col cell
|               bss

grade |         1          2          3 |     Total
1 |         1          3          6 |        10 

|     10.00      30.00      60.00 |    100.00 
|     20.00      27.27      25.00 |     25.00 
|      2.50       7.50      15.00 |     25.00

2 |         2          4          9 |        15 
|     13.33      26.67      60.00 |    100.00 
|     40.00      36.36      37.50 |     37.50 
|      5.00      10.00      22.50 |     37.50

3 |         2          4          9 |        15 
|     13.33      26.67      60.00 |    100.00 
|     40.00      36.36      37.50 |     37.50 
|      5.00      10.00      22.50 |     37.50

Total |         5         11         24 |        40 
|     12.50      27.50      60.00 |    100.00 
|    100.00     100.00 100.00 |    100.00 
|     12.50      27.50      60.00 |    100.00

20

. tabulate grade bss, row col exp
|               bss

grade |         1          2          3 |     Total
1 |         1          3          6 |        10

|       1.3        2.8        6.0 |      10.0
|     10.00      30.00      60.00 |    100.00 
|     20.00      27.27      25.00 |     25.00

2 |         2          4          9 |        15
|       1.9        4.1        9.0 |      15.0 
|     13.33      26.67      60.00 |    100.00 
|     40.00      36.36      37.50 |     37.50

3 |         2          4          9 |        15
|       1.9        4.1        9.0 |      15.0 
|     13.33      26.67      60.00 |    100.00 
|     40.00      36.36      37.50 |     37.50

Total |         5         11         24 |        40
|       5.0       11.0       24.0 |      40.0
|     12.50      27.50      60.00 |    100.00 
|    100.00     100.00 100.00 |    100.00 
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In 2 x 2 Contingency Tables

• The chi squared test and the Z test 
comparing binomial proportions are 
exactly the same test
– The chi squared statistic is just the square of 

the Z statistic
– The chi squared test P value will be the same 

as the two-sided P value for the Z test
– Most software packages have a tendency to 

tell you the value of the chi squared statistic
22

Elevator Statistics

• Well, nearly elevator statistics
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Need for Large Samples

• Note that because the goodness of fit test 
is relying on asymptotic properties, it is 
only valid in “large” samples
– A commonly used rule of thumb if that the 

expected counts be greater than 5 in the vast 
majority of the cells

24

Other Large Sample Tests

• “Likelihood Ratio Test”
– Also has chi squared distribution in large 

samples
• But not the same statistic as “chi squared statistic”

– Good large sample properties
• Often most powerful

– Less commonly used in 2 x 2 tables
• We will use it more often in logistic regression
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Stata Commands: CI

• “cs respvar groupvar, level(#)”
• Both variables must be coded as 0 and 1
• Response will be called “cases” and “noncases”

– CI can be found under “Risk difference”
– Chi squared statistic and two-sided P value

• “tabulate respvar groupvar, row 
col chi2 lr”
– Row and column percentages
– Chi squared and likelihood ratio P values

26

Ex: Stata Commands

• Example: Hepatomegaly by treatment 
group in PBC data set

. g tx= 2 – treatmnt

. cs hepmeg tx
| tx |
|   Exposed   Unexposed  |      Total

Cases |        73          87  |        160
Noncases |        84          66  |        150

Total |       157         153  |        310
|                        |

Risk |  .4649682    .5686275  |    .516129

27

Ex: Stata Commands (cont.)

• Example: Hepatomegaly by treatment 
group in PBC data set (cont.)

|   Point  |
| estimate | [95% Conf. Interval]

Risk diff |  -.1037  |   -.2143    .0070 
Risk ratio |   .8177  |    .6580   1.0161 

Prev frac ex |   .1823  |   -.0161    .3420 
Prev frac pop |   .0923  |                  _ _

chi2(1) =     3.33  Pr>chi2 = 0.0679

28

Interpretation

• With 95% confidence, the true difference 
in the prevalence of hepatomegaly at 
baseline is between .007 higher in 
treatment group and .214 lower in 
treatment group.

• (What are these populations? At baseline, we only 
have samples that are treated and control. Both 
groups were drawn from the same population.)

• Based on two sided P = .0679, we cannot 
reject the null hypothesis of equality
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Caveat: Sad Fact of Life

• Different variance estimates are typically 
used for CI and hypothesis tests
– We can see disagreement between the 

conclusion reached by CI and P value
• The P value might be less than .05, but the CI 

contain 0
• The P value might be greater than .05, but the CI 

exclude 0

30

Comparison to t Test

• Hepatomegaly by treatment group using 
two sample t test with unequal variances
– Z test uses the standard normal distribution 

and does not use the sample variance
.ttest hepmeg, by(tx) unequal                            
Two-sample t test; unequal variances 0: N obs= 157  

1: N obs= 153       
Variable | Mean  St Err  t    P>|t|    [95% CI]

0 | .465 .0399   11.6  0.0000  .386 .544  
1 | .569 .0402   14.2  0.0000  .489 .648

diff |-.104 .0566  -1.83  0.0682 -.215 .008  

31

Comparison to t Test (cont)
Satterthwaite's degrees of freedom: 307.8897             
Ho: mean(0) - mean(1) = diff = 0                         
Ha: diff < 0    Ha: diff ~= 0      Ha: diff > 0          
t =  -1.8300    t =  -1.8300       t =  -1.8300          
P < t= 0.0341   P > |t|= 0.0682    P > t= 0.9659   

• From “standard” analysis
– CI: -0.2143, 0.0070; P= 0.0679

• From nonstandard t test based analysis
– CI: -0.215, 0.008; P= 0.0682

32

Yates Correction

• Historically, a “continuity correction” to the 
chi squared test to try to avoid its anti-
conservatism in small samples
– All that was achieved was getting a test that 

behaves as poorly as the Fisher’s exact test
– I heartily disrecommend use of the continuity 

correction when comparing two samples
• (There is a continuity correction used in one 

sample Z tests that is useful, but exact distributions 
are even better)
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Comparing Independent 
Proportions

Small Samples (Uncensored)

34

Small Sample Distribution

• The exact distribution for the difference in 
two proportions can not be determined in 
general, because of the mean – variance 
relationship
– We need to know the value of the two 

proportions being compared in order to find 
the exact distribution of the difference

35

Small Sample CI

• We have no way of obtaining exact CI for 
the difference in proportions
– We could consider all possible values of the 

two proportions, and see whether a test would 
reject each combination

• But the resulting joint confidence interval would not 
always give the same decision for equal 
differences

– E.g, it might reject .10 and .20, but not .40 and .50

36

Small Sample Tests

• We can, however, describe the exact 
distribution of the data under the null 
hypothesis conditional on all the “margins” 
of a contingency table
– A “permutation” distribution

• We imagine randomly assigning observations 
between the groups
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Permutation Idea
• Randomly permute m0 positives and m1 negatives
• Call the first n0 “group 0” and the last n1 “group 1”
• Repeat many times and see how often “group 0” 

has a or more positives
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Permutation Tests

• I usually object to permutation distributions 
except as a last resort
– They test equality of distributions, not just 

equality of the population parameter
• Usually they are not, however, guaranteed to 

detect arbitrary differences between distributions 
even in infinite samples

39

Permutation with Binary Data

• However, with binary data, distributions 
are different if and only if the proportions 
are different

• Hence permutation tests are okay for testing
• But still, we have no confidence intervals because 

we have not quantified alternatives

40

Small Sample Tests

• Conditioning on the margins
– Often one margin is fixed by design

• Cohort studies sample by exposure
• Case-control studies sample by disease

– In any case, it can be shown that none of the 
margin totals contribute information about the 
difference in proportions
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Fisher’s Exact Test

• Probability of more extreme contingency 
tables with the same marginal totals
– Probabilities by hypergeometric distribution

• (Use a computer)
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Stata Commands

• The Fisher’s exact test P values are given 
by several commands
– “cs respvar groupvar, exact”
– “tabulate respvar groupvar, exact”

• One-sided and two-sided  P values are provided

43

Stata Example

• Example: Hepatomegaly by treatment 
group (cont.)

. cs hepmeg tx, exact
|    Pt. Est.       |    [95% CI]

Risk diff|    .1036593       | -.007    .214            
Risk ratio|    1.222938       |  .984   1.520            
Attr fr ex|    .1822974       | -.016    .342            
Attr fr po|    .0991242       |                _

1-sided Fisher's exact P = 0.0433        
2-sided Fisher's exact P = 0.0704        

44

Comments

• Fisher’s exact test does not turn out to be 
an exact test in practice
– A problem is posed by the discrete nature of 

the data
• To achieve the desired level .05 two-sided test, we 

would sometimes have to reject the null when both 
groups had 0 successes

– With some results flip a biased coin to decide whether 
significant

– Few people are willing to do this
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Problem

• We then face a dilemma
– The chi squared test (Z test for proportions) 

may be anti-conservative in small samples
• Generally so long as all cell counts in the 

contingency table are expected to be greater than 
5 under the null hypothesis, we are OK

– The Fisher’s exact test is too conservative

46

Alternatives

• Great improvements in statistical power 
obtained by modifying either of those tests 
to achieve as close to the nominal type I 
error without exceeding
– Several statistical packages provide such 

modified tests (e.g., StatExact)
– Stata does not

47

Modifications

• Basic idea
– Use the statistic
– Don’t presume the classical distribution

• Don’t assume chi squared statistic has chi square 
distribution

• Don’t assume Fisher’s Exact P value has uniform 
distribution

– Consider all possible values of p common to 
both groups, and use exact distribution

• Then take worst case 48

True Type I Error by Common p
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Gains in Power

• Power of unadjusted, adjusted level .05 
tests

50

General Comments

– It is generally immaterial whether the Fisher’s 
exact test P value or the chi square statistic or 
likelihood ratio statistic is used as the basis 
for the exact test

– In any case, the critical value is dependent 
upon the sample sizes

– Using this approach, substantial improvement 
in power is obtained in low sample sizes

– I strongly recommend its use when confronted 
with small samples in real life
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Inference About Odds Ratios

52

Odds of Exceeding a Threshold

• Previously: inference based on the 
probability of exceeding a threshold 
– Sometimes it is more convenient to discuss 

the odds of exceeding a threshold
• odds = prob / (1 – prob)

– In one and two sample problems, inference 
about the odds is easily obtained from 
inference about the probability (proportion)

• And the proportion is more easily understood
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Advantage of Using Odds

• Avoiding effect modification
– When adjusting for confounders or precision 

variables, it is intuitively unlikely that 
differences in proportions will be the same 
across all subgroups

• Proportions must be between 0 and 1
• Odds can be between 0 and infinity

– (log odds can be between negative infinity and infinity)

• Case – control studies
54

Case – Control Studies

• When outcome event is rare
– Case – control sampling is efficient
– Odds is very close to the probability (1 – prob

is approximately equal to prob)
– Hence, the odds ratio is approximately the 

risk ratio

55

Mathematics Based Logic

• The odds ratio is independent of the 
conditional probability being estimated

• Cohort studies:             Pr (Disease | Exposed)
• Case-control studies:   Pr (Exposed | Disease)

• Can consider Odds Ratio for exposure 
based on disease from case-control study
– Equal to Odds Ratio for disease by exposure
– For rare disease, this is approximately ratio of 

disease probability
56

Odds of Exceeding a Threshold

• Inference about the odds is usually made 
in the context of the chi squared test
– In Stata, we can obtain estimates of the odds 

ratio using
• cc casevar expvar

– cc = case – control
– Provides odds ratio and chi squared statistic
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Looking to the Future

• In two sample tests, I think using 
difference in proportions is best

• When multiple samples or adjusting for 
covariates we tend to use logistic 
regression
– Summary measures based on odds ratio


