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Lecture Outline

» Testing vs Confidence Intervals
* Review of Common Approach
» Exceptions to Common Approach

+ Comparing Means from Independent
Samples

— Two sample t test

Testing vs
Confidence Intervals

Reporting Frequentist Inference

* Three measures (four numbers)

— Consider whether the observed data might
reasonably be expected to be obtained under
particular hypotheses

* Point estimate
 Confidence interval: all hypotheses for which the
data might reasonably be observed

* P value: probability such extreme data would have
been obtained under the null hypothesis

— Binary decision: Reject or do not reject the null according

to whether the P value is low 4




Parallels Between Tests, Cls

* If the null hypothesis not in ClI, reject null
* (Using same level of confidence)
* Relative advantages
— Test only requires sampling distn under null
— Cl requires sampling distn under alternatives

— Cl provides interpretation when null is not
rejected

Scientific Information

— “Rejection” uses a single level of significance
« Different settings might demand different criteria
— P value communicates statistical evidence,
not scientific importance
— Only confidence interval allows you to
interpret failure to reject the null:

+ Distinguish between
— Inadequate precision (sample size)
— Strong evidence for null

Hypothetical Example

* Clinical trials of new treatments for high
blood pressure

— Consider four possible scenarios

» Measure of treatment effect is the difference in
average SBP at the end of six months treatment
» Scenarios differ in
— Sample size
— Variability of blood pressure
— Treatment effect
* (The scenarios are not replications of the same
experiment or even the same scientific setting)
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Reporting P values

Study P value
A 0.1974
B 0.1974
C 0.0099
D 0.0099




Point Estimates
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Study SBP Diff P value
A 27.16 0.1974
B 0.27 0.1974
C 27.16 0.0099
D 0.27 0.0099

Confidence Intervals
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Study SBP Diff 95% CI P value
A 27.16 -14.14, 68.46 0.1974
B 0.27 -0.14, 0.68 0.1974
C 27.16 6.51, 47.81 0.0099
D 0.27 0.06, 0.47 0.0099
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Interpreting Nonsignificance
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» Studies A and B are both “nonsignificant”
— Only study B ruled out clinically important
differences
— The results of study A might reasonably have

been obtained if the treatment truly lowered
SBP by as much as 68 mm Hg

Interpreting Significance
» Studies C and D are both statistically
significant results

— Only study C demonstrated clinically
important differences

— The results of study D are only frequently
obtained if the treatment truly lowered SBP by
0.47 mm Hg or less
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Bottom Line

* If ink is not in short supply, there is no
reason not to give point estimates, Cl, and
P value

« If ink is in short supply, the confidence
interval provides most information
— (but sometimes a confidence interval cannot

be easily obtained, because the sampling
distribution is unknown under the null)
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But: Impact of “Three over n”

* The sample size is also important

— The pure statistical fantasy
* The P value and Cl account for the sample size
— The scientific reality
* We need to be able to judge what proportion of the
population might have been missed in our sample

— There might be “outliers” in the population

— If they are not in our sample, we will not have correctly
estimated the variability of our estimates

» The “Three over n” rule provides some guidance
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Full Report of Analysis

Study n SBP Diff 95% CI P value
A 20 27.16 -14.14, 68.46 0.1974
B 20 0.27 -0.14, 0.68 0.1974
C 80 27.16 6.51, 47.81 0.0099
D 80 0.27 0.06, 0.47 0.0099

Interpreting a “Negative Study”
 This then highlights issues related to the
interpretation of a study in which no
statistically significant difference between
groups was found
— We have to consider the “differential

diagnosis” of possible situations in which we
might observe nonsignificance
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General approach

» Refined scientific question
— We compare the distribution of some
response variable differs across groups
» E.g., looking for an association between smoking
and blood pressure by comparing distribution of
SBP between smokers and nonsmokers
— We base our decisions on a scientifically
appropriate summary measure 6
» E.g., difference of means, ratio of medians, ...

Interpreting a “Negative Study”

* Possible explanations for no statistically
significant difference in 6

* There is no true difference in the distribution of
response across groups

» There is a difference in the distribution of response
across groups, but the value of 6 is the same for
both groups

— (i.e., the distributions differ in some other way)

» There is a difference in the value of 6 between the

groups, but our study was not precise enough

— A “type Il error” from low “statistical power” 18

Interpreting a “Positive Study”

* Analogous interpretations when we do find
a statistically significant difference in 6
* There is a true difference in the value of 6

* There is no true difference in 0, but we were
unlucky and observed spuriously high or low
results

— Random chance leading to a “type | error”

» The p value tells us how unlucky we would have had
to have been

— (Used a statistic that allows other differences in the distn
to be misinterpreted as a difference in 6

» E.g., different variances causing significant t test) 19

Review of Most Common
Approach
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Population Parameters
» Scientific questions are typically answered
by making inference about some
population parameter 6
— Quantification of population parameter
* Mean, geometric mean, median (other quantiles),
proportion/odds above threshold, hazard
— Comparing distributions across groups
« Difference or ratio of univariate parameters

* Bivariate parameters
— Mean ratio, median difference, Pr (Y > X) 21

Approximate Sampling Distn

* Most often we choose estimators that are
asymptotically normally distributed

For large n : 0~ N(mean 0, vaer

n

V' is related to average "statistical information"
from each observation
Often : V' depends on the value of &
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Typical Method for 100(1-a)% ClI

» Set of all true means that reasonably
result in the observed sample mean
* “reasonably” = central 100(1-a)% of sampling distn

* When estimate is approximately normal
100(1 - @)% confidenceintervalis

(estimate) % (crit val)x (std error)
where the critical valueis the upper1—a /2
quantile of the standard normal distribution

(or tdistribution when the estimateis a sample mean) ,,

Typical Method for 100(1-a)% ClI

» Set of all true means that reasonably
result in the observed sample mean
* “reasonably” = central 100(1-a)% of sampling distn

100(1- @)% confidence interval is (6, ,6,, )
6, = - Ziai sé(é)
0, =0+z,,, sel0)
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t Distribution Quantiles
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» Selected upper quantiles of the t
distribution: ¢, , (Note t,,,=2z,,)

df .005 .01  .025 .05
1 63.657 31.821 12.706 6.314
3 5.841 4.541 3.182 2.353
9 3.250 2.821 2.262 1.833
20 2.845 2.528 2.086 1.725
50 2.678 2.403 2.009 1.676
o 2.576 2.326 1.960 1.645 2

Computing P values using Z
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Standardized statistic - — ?0 ~ N(0,1)
se\d
Stata commands
. 0-0,
Lower one -sided P value norm| —
sei@i
. 6-6,
Upper one - sided P value I-norm| —
se\d
: 6-6,
Two -sided P value 2 xnorm| — abs =
seld) ) )

Comparing Estimates
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» Comparisons across strata or studies

— This is easy, if estimates are independent and
approximately normally distributed

For independent 6, ~ N (Ql,sefl 6, ~ N (Hz,sezz)
él +é2 < N(6’1 +0,,se +se22)
él —é2 < N(é’1 -0,,s€] +se22)

2
/6, + N ﬁ,% se,2+9—12se22
HZ 92 92
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>

Correlated Estimates
* If estimates are correlated and
approximately normally distributed

For correlated 6, ~ N( l,sefl 6, ~ N(ez,sej)

w =corr\b,,0,

>

A

+6, éN(Hl +0,,se] +se; +2w se, sez)

>

A

. 2 2
-6, ~ N(t91 —0,,se; +se;, —2w se, sez)

28




Exceptions to Typical
Approach
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There Are Exceptions

* Not all estimators are normally distributed

— In small samples we tend to use the t

distribution when estimate is sample mean
* If sample sizes too small, still may not be valid

— The sample minimum and maximum are
exponentially distributed in large samples

— If data are analyzed repeatedly using a
stopping rule, estimates are not normal

« Stopping rules are used for ethical reasons in
many clinical trials 30

Stopping Rules in Clinical Trials

« Early stopping of a clinical trial is often
considered for ethics or efficiency.

— Early stopping might be based on

* Individual ethics
— the observed statistic suggests efficacy
— the observed statistic suggests harm
» Group ethics
— the observed statistic suggests equivalence

— Exact choice will vary according to scientific /
clinical setting 31

Example

* A study of premature birth is planned with
100 subjects

— Outcome: Measure difference between
treatment groups in estimated gestational age
in weeks at birth

— Monitoring plan
 Data are analyzed after every group of 25 subjects
are accrued

« Stopping rule based on observed estimate of

treatment effect 5




“O’Brien-Fleming” Stopping Rule
» At each analysis, stop early if estimated
treatment effect is in indicated range

N Harm Equiv Efficacy
25 < -4.09 —-———= > 4.09
50 < -2.05 (-0.006,0.006) > 2.05
75 < -1.36 (-0.684,0.684) > 1.36
33

Fixed Sample Sampling Distn
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* If no interim analyses

Fixed Sample: Mull (Mean= 0)
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Sequential Sampling Density
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« Sampling density under stopping rule

Fixed Sample: Mull (Mean= 0} CBrien-Flaming: Mull (Mean= 0}
17 I a) —
Flued Sample: AR (Mean= 1.43) OfBrien-Fleming: AR (Mean= 1.43)
./ " i

Special Cases
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* When estimators are not normally
distributed, finding confidence intervals
often involves a trial and error search

— Luckily computers can do this for us
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Comparisons of Means From
Two Independent Samples
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Difference of Means

» Sampling distribution for sample means
computed from independent samples

2 2
ForindependentX&NE,ux,o-Xj Y“"N(ﬂy:o-Y\J
I’lY ny
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Cl Using Small Sample Correction

* We again generally use a t distribution for
added conservatism in small samples

Approximate 100(1- )% Cl for y, - 1, is

2 2

v_ v /SX Sy
(X _Y)itk,l—a/2 —+—
ny ny

where degrees of freedom k is a weighted function

of the two sample sizes (many methods exist)
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* Hypothesis test for equality of means from
two populations based on t distribution

Atestof H,: i, = u, can be based on
(x-7) "

T= ~1,
S2 S2
Sx 4 Sy

ny Ny
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Test for Difference in Means
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» Hypothesis test for difference of means for
two populations based on t distribution

Atestof H, : u,, — p, = A, can be based on

T:()?_Y)_AOT 2
2 2

S S
Sx Sy
ny Hy
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T test for Unequal Variances
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* The above Cl and hypothesis test are
referred to as “t test for unequal variances”

— The distributional theory is only approximate
in small samples (even if data are normal)

— Many ways of handling the degrees of
freedom exist
* E.g., “Satterthwaite” or “Welch”

* (I can’t think of anything that is less important than
trying to decide the best way to choose degrees of

freedom in this problem) "

Stata: Two Sample t Test
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e “ttest var, by (groupvar) unequal”

* Tests that the mean of var is the same in the two
groups identified by groupvar

* Allows that variances might be unequal

» Uses Satterthwaite method unless “welch” is
specified

* Provides 95% confidence intervals for each group
and for the difference

* Provides two-sided P value and both upper and
lower one-sided P values
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Ex: Change in Spd 0.075v 0.4

9909090000000 000000C0CCCCCOTIRIRYOYNOYTYTY
. ttest diffspd if (dose > 0 & dose < 0.1) | dose >
0.3, by(dose) unequal
Two-sample t test with unequal variances

Group | Obs Mean StdErr StdDewv [95% CI]
.075 | 26 -0.41 .269 1.37 -0.97 0.14
.400 | 20 -1.76 .486 2.17 -2.77 -0.74
comb | 46 -1.00 .275 1.87 -1.55 -0.44
diff | 1.34 .555 0.21 2.48

diff = mean(.075) - mean(.400) t = 2.4204

Ho: diff = 0 Satterthwaite's deg free = 30.2891

Ha: diff < O Ha: diff != 0 Ha: diff > O

Pr(T<t)= 0.9891 Pr(|T|>|t|)= 0.0217 Pr(T>t)= 0.0109
44




Ex: Analysis by Dose Group

» Spermidine change over treatment period
by dose group
—Dose 0.075

» Average decrease of 0.41
* 95% CI: 0.97 decrease to 0.14 increase

—Dose 0.4
» Average decrease of 1.76
* 95% CI: 0.74 decrease to 2.77 increase

— (Note overlapping Cl)
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Ex: Comparison of Dose Groups
 Difference between dose groups in
Spermidine change over treatment period

— Point estimate: 1.34

» Decrease in 0.4 group was 1.34 more than
decrease in 0.075 group

—95% Cl: (0.21, 2.48)

» Above observation is not atypical if true difference
in average decrease between 0.21 and 2.48

— Two —sided P value: 0.0217
« Statistically significant diff between dose groups 4

Assuming Equal Variances

* Sometimes researchers assume that the
variances for both populations are equal
— In Stata, just drop the “unequal” option
— | am generally against such assumptions,
because the assumption is more detailed than
what we are trying to find out

* We don’t know whether the means are different
across groups, so are we willing to assume we
know that the variances are equal?
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Assuming Equal Variances

* When we do make this assumption, we
use a pooled estimate of the variance
100(1 - )% ClI for py - 1 is
(Y_)7)i tk,lfa/2S17 L+L
nX nY
where sf, is a pooled estimate of variance
S2 (”X 'I)Si( + (ny '1)S§

ny, +ny, -2

and degrees of freedom k=n, +n, —2 *




Assuming Equal Variances

» The CIl and hypothesis test based on the “t
test for equal variances” is exact if the
data are normally distributed and the
population variances are truly equal
— However, they are not valid inference about

the mean if the variances are not equal

» Thus a rejection of the null hypothesis can
correspond to rejection of equality of distributions
with 95% confidence, but not rejection of equality

of means with 95% confidence w0

Equal vs Unequal Variances

» Comparisons of Cl for equal and unequal
variances
— If n=m or the sample variances are equal,
there is no difference in the SE estimates
» There may be differences in the critical value used
— If variances are truly equal, you lose precision
if you assume they are not
— If variances are not equal, you lose accuracy
in statements about your level of confidence if
you assume they are 50

If Incorrectly Assume Equal Var

* For inference about the mean

— Smaller sample size in the group with larger
variance leads to anti-conservative inference

* Cl too narrow, P values too small; you reject the
hypothesis of equal means too often (type | error
larger than you think)

— Larger sample size in the group with larger
variance leads to conservative inference

* Cl too wide; P values too small; type | error smaller
than you think
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