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* Inference for Mean Difference

* Inference for Binomial Proportions
* Inference for Poisson Rates

* Inference for Geometric Means

Inference About Means From
Matched Samples

Inference for Associations
* Previously we considered inference about
the mean of a distribution within a single
group
— Limited application, because we rarely have
some absolute hypothesis about the value of
a population parameter
— Exception: means of differences or ratios

+ Natural comparison of differences to 0 and ratios
to1




Precision of Inference

» Recall standard error of sample mean
from independent variables depends on:

— Variance of measurements within group
— Sample size

sol7)= \/W

Increased Precision
 Difference in means across groups can be
estimated by mean difference
— Comparisons within a pair of positively
correlated subjects leads greater precision

+ Adjusting for a highly predictive random effect
— Correlation of matched measurements near 1

Variance of difference with matched samples :

Var(W — X)=Var(W)+Var(X)-2pVar(W) Var(X)
Variance of difference with independent samples :
Var(W — X)) =Var(W)+Var(X)

Matched Samples
* Many studies make use of matched
samples to study associations
— E.g., cross-over studies in which each subject
receives both treatments in random order
— E.g., “split-plot” designs in which each subject
receives both treatments in different locations
* Eye disease, skin disease
— E.g., matched subjects in which one of each
pair receives a treatment

» Twin studies, matched communities 7

Collapsing Data on Subjects

» So far: Inference assuming independent
measurements

* When we take several measurements on
each subject, we often combine them
— Take difference between matched data
— Subjects are independent




Inference on Paired Differences

+ Scientific (and statistical) questions relate

Paired Differences

* Measurements W, X; on i-th subject made
under different conditions to be compared

— Note difference of means E(W) — E(X) is the
same as the mean difference E(W-X)

For the i - th subject :
W~ (.0?) X, ~(0.5%) corrli,.x,)=p
Difference D, =W, - Y, ~ (,u,az)

u=y—0

o’ =0’ +1* -2por 9

to distribution of paired differences
— Estimate / test u = mean of differences using
one sample inference about means

10

Statistics on Differences

+ Sample mean, sample variance of
differences
For the i - th subject : W, X,
Compute differences D, =W, -7,

Summary statistics
5_Lgp _(DreD)
nig

n

1 —\
Sé:H;(Di_D) 1

Inference on Differences

* Inference for u= E(W-Y) = E(W) - E(Y)

Point estimate : fi=D
100(1— & )% CI for p: Bi%tn_lql_a/z

P values based on : Priz, < D= p
Sp /In

12




Stata: Paired t test
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» Paired t test is default when you specify
two variables
—“ttest varl = var2”
* Tests that the mean of var1 equals the mean of
var2 where measurements are made on matched
samples

— Obviously requires data in “wide” format
» Rows in your dataset correspond to same subjects

+ Also gives point estimates and 95% CI

Example: SEP data
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« Compare n35 peaks on right and left

— (Why? Should we consider dominant side?)

. ttest n35R=n35L
Paired t test

Var | Obs Mean StdErr StdDev [95% ConfInt]

n35R | 250 35.007 .230 3.639 34.554 35.460

n35L | 250 35.178 .232 3.667 34.722 35.635

diff | 250 -.172 .130 2.054 -.427 .085

mean (diff) = mean(n35R - n35L) t = -1.3178

Ho: mean(diff) = 0 deg of fr = 249
Ha: mn(dff) < 0 Ha: mn(dff) !'= 0 Ha: mn(diff) > 0
Pr(T<t)= 0.0944 Pr(|T|>|t]) = 0.1888 Pr(T > t) = 0.9056

14

Example: Interpretation

» Estimate delay of 35.007 msec on R;

35.178 msecon L

— Difference of 0.172 msec higher on L

—95% CI: Such a difference is not unexpected if
the true difference were between .427 msec
higher on L to .085 higher on R

— Based on two-sided P value: We would not
reject null hypothesis of equal means

» Two-sided because no reason to presuppose one
side higher than other and no different action 15

Inference for Paired Ratios

9000000000000 000000000000000CFO

» Could look at ratio of paired observations
— Less stable if denominators near 0
* BUT: Ratio of means is not the mean ratio

— Consider paired observations (Y,X)
*(4,2) (8,1) (12,3) (16, 5) (20, 4)
- E(Y)=60/5=12; E(X)=15/5= 3
«E(Y)/E(X)=12 /3=4

— Consider ratios Y / X
. 2 8 4 32 5
«E(Y/X)=222/5=4.44

16




Stata: Inference for Ratios
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* |In Stata, we would create ratios
*g n35ratio= n35R / n35L

e ttest n35ratio=1

One-sample t test
Variable | Obs Mean StdErr StdDev [95% Conf Int]

n35ratio | 250 .997 .00374 .0591 .990 1.004
mean = mean (n35ratio) t = -0.8371

Ho: mean = 1 deg of freedom = 249
Ha: mean < 1 Ha: mean !=1 Ha: mean > 1
Pr(T<t)= 0.2017 Pr(|T|[>|t])= 0.4033 Pr(T>t)= 0.79838

Inference for
Binomial Proportions

Large Samples
(Uncensored)

18

Binary Random Variables
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» Many variables can take on two values
— For convenience code as 0 or 1
« Vital status: “Dead” 0 is (alive) or 1 (dead)
* Sex: “Female” is 0 (male) or 1 (female)
* Intervention: “Tx” is 0 (control) or 1 (new therapy)

» Sometimes dichotomize variables

— For scientific reasons (statistically less precise)
* Blood pressure less than 160 mm Hg
* PSA less than 4 ng/ml
* Serum glucose less than 120 mg/d|

Statistical Hypotheses

» Scientific questions translated into a
statistical question about parameter p
— Binary variable has Bernoulli (binomial) distn

* p is the proportion of the population with the
random variable equal to 1

* pis also the population mean for the random
variable

20




Point Estimate

..............................

» Use the sample mean

iid

Data X,,...,X, ~B(l,p) E(X,)=p Var(X,)=p(l-p)

X ++ X,
1

i=1 n

Point estimate: p=X= X =

I |~

21

Approximate Distribution

..............................

* Use the central limit theorem

Data X,,..., X, ii~dz~3(1, p) E(X,)=p Var(X,)=p(l-p)

D=X ~ M
p=X N[p, " j

—NOTE: A mean — variance relationship

22

Continuity Correction

..............................

* Also, the number of events is discrete

—In one sample problem we often make a
continuity correction

23

Asymptotic Cl: Best Approach

..............................

* We do best by considering mean-variance
relationship and continuity correction
— Requires quadratic formula or iterative search

100(1 - @)% CI for p: (pr-Pu)
N b (-

P = p_%_zl—a/Z pL(an)

hu(l-py)

A .1
Puv=Pt_—*+Zi_4»
2n n

24




Asymptotic Cl: Elevator Stats

» Often we can just use best estimate of p in
standard error for confidence intervals and
ignore the continuity correction

—np and n(71-p) must be large
100(1-a)%Clfor p:  ptz._,, A1-p)
n

25

Asymptotic P values: Elevator

» We still consider mean-variance
relationship but ignore continuity correction

Pvalues for H,: p=p,:

Lower one -sided P :

>
>

Upper one -sided P : P

2 X min (Plower s Pupper s

Two -sided P :

B, =Pr| Z<—=—"2—r
1 [ po(l_po)/”

=P z> LB
" E po(l=po)/n

0.5),,

|

Asymptotic P values: Best

* We do best by considering mean-variance
relationship and continuity correction
Pvaluesfor H,: p=p,:
A -{-L—
Lower one -sided P : P,. =PrlZ< P™ o Do
po(l _po)/n

A1
Upper one -sided P: P, =Pr| Z> Pz Po

Py (1 — P )/ n
2 X min (Pluwer s Pupper ’0.5)26

Two -sided P :

Stata: Asymptotic Inference

 Stata explicitly provides exact inference
— If we want asymptotic inference, we could

» Compute standard errors, Z statistics
* Use “norm ( ) ” function to get P values

— But why not just use exact inference

* Itis better

28




Inference for
Binomial Proportions

Exact Inference
(Uncensored)

29

Exact Distribution

* Here, we do not have to rely on asymptotic
theory
— A binary variable must be Bernoulli

— Sums of independent Bernoulli random
variables must be binomial

— We can use the exact binomial distribution to
compute our probabilities
* (Well, computers can)

30

Binomial Distribution

 Probability theory provides a formula for
the distribution of binomial random
variables

Data X,..., X, iiNdB(Ll?)
y

Y:Z":X,. =X, ++X,~B(n,p)
i=1

n!
Fork=0,1,...,n: Pr(Y=k)= a-p)y*
T=0= o

Exact Point Estimate

+ Still use the sample mean

Data X,,..., X, ii~dB(1,p) E(X,)=p Var(X,)=p(l-p)

. . A T < X ++X
Point estimate: p=X-= ZXI. =1~
i=1

1
n n

32




Exact Confidence Intervals
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* Use the binomial distribution
— (But let a computer do it for you)
An exact 100(1 - ¢)% confidence interval for p
based on observation Y =k is (p,, p, )

where an iterative search is used to find

A _ k I’l! Aj A n—i
Pr[YSk,pU]—;mpu(l_Pu) =al2

A _ < l’l! Ad _a n—i
Pr[YZk,pL]—I;—i!(n_i)! pi(l-p) " =al2

Stata: Exact CI for Proportion

* Syntax
-Y“ci varlist, binomial”

* Provides exact confidence intervals
* (Standard errors are based on asymptotics)

34

Ex: Relapse, Nadir PSA
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* PSA dataset: Relapse in 24 months
— Generating variables of interest

. g relapse24=0
. replace relapse24=1 if inrem=="no" & obstime <= 24

. g nadirge2= nadir
. recode nadirge2 min/2=0 2/max=1

35

Ex: Cl for Prevalence
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* Prevalence of relapse in 24 months
. cl relapse24, binomial

Binomial Exact
Variable | Obs Mean StdErr [95% ConflInt]
relapse24 | 50 .44 .070 .300 .587

36




Ex: Cl for 1-Specificity, Sensitivity

» 1-Specificity, Sensitivity of Nadir PSA > 2
for relapse within 24 months

. bysort relapse24: ci nadirge2, binomial
-> relapse24 = 0

Binomial Exact
Variable | Obs Mean StdErr [95% Conf Int]
nadirge2 | 28 .143 .066 .040 .327

-> relapse24 =1

Binomial Exact
Variable | Obs Mean StdErr [95% Conf Int]
nadirge2 | 22 .682 .099 .451 .861 37

Ex: Interpretation
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— The observed prevalence of relapse within 24
months of 44% was not unusual if the true
prevalence were between 30.0% and 58.7%

» With 95% confidence reject Prev < 30.0% or >58.7%

— The observed sensitivity of 68.2% was not
unusual if the true sensitivity were between
45.1% and 86.1%

— The observed specificity of 85.7% was not
unusual if the true specificity were between
67.3% and 96.0%

38

Compare to Asymptotic Cls
» Compare exact results to asymptotic ClI
using t statistics

— Normally we would use Z statistics
— Std errors differ by square root of (n/ n-1)
— Critical value differs according to df

39

Compare to Asymptotic Cls

9909090000000 000000C0CCCCCOTIRIRYOYNOYTYTY
. cl relapsez24
Variable | Obs Mean StdErr [95% ConflInt]
relapse24 | 50 .44 .071 .297 .583

. bysort relapse24: ci nadirge?2

-> relapse24 = 0

Variable | Obs Mean StdErr [95% Conflnt]
nadirge2 | 28 .143 .067 .005 .281

-> relapse24 =1
Variable | Obs Mean StdErr [95% ConflInt]
nadirge2 | 22 . 682 .102 .470 .893

40




Elevator Stats: 0 events in n trials

» Two-sided confidence intervals fail in the
case where there are either 0 or n events
observed in n Bernoulli trials

« If Y=0, there is no lower confidence bound
« If Y=n, there is no upper confidence bound

— We can, however, derive one-sided
confidence bounds in that case

41

Upper Conf Bnd for O Events

* Exact upper confidence bound when all
observations are 0

Suppose Y ~ B(n, p)and Y = 0is observed
Exact 100(1- )% upper confidence bound for p is p,,

Pr[Y=O;f9U]=(1_lA7U)n =a
U
l'\)U :l_al/n

42

Large Sample Approximation

(1-p,) =a = nlog(l- p,)=log(a)
For small p,, log(l - Dy ) ~—py
. log(a)

soforlargen = p,~-

43

Elevator Stats: O Events in n trials

* “Three over n rule”

—log (.05) = -2.9957

—In large samples, when 0 events observed,
the 95% upper confidence bound for p is
approximately 3 /n

* 99% upper confidence bound
—log (.01) = -4.605
—Use 4.6 / n as 99% upper confidence bound

44




Elevator Stats vs Exact

9000000000000 000000000000000CFO

* When X=0 events observed in n Bernoulli

trials
95% bound 99% bound

Exact 3/n Exact 4.6/n
2 .7764 1.50 .9000 2.3000
L4507 .60 .6019 .9200
10 .2589 .30 .3690 .4600
20 .1391 .15 .2057 .2300
30 .0950 .10 .1423 .1533
50 .0582 .06 .0880 .0920
100 .0295 .03 .0450 .0460

45

Elevator Stats: n Events in n trials
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* We can also use the “Three over n rule” to
find the lower confidence bound for p
when every subject has an event
— Lower 95% confidence boundis 1 —3/n

46

Exact Tests for a Proportion
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» Use binomial distribution under the null
— (But let a computer do it for you)

For Y ~ B(n, p) and observation Y =k :
Test H,, : p = p,, calculate P values by
" ! ‘ ,
Upper one -sided : Rxpper = Pr[Y 2 k7 pO]: Z'(L)' pOI (1 —Po )"_X
= il(n—1)!

k
Lower one-sided: P, =Pr[Y <k;p,|= Z'(L')’ P (1=p, )"
= il(n

Two -sided (easy): 2xmin(B,,,,, P, . ,0.5)

upper =" 47

Stata: Tests for Proportion

» Syntax
- “bitest var = #p”

* Provides exact test that proportion = #p

* Gives upper and lower one-sided, two-sided P
values

— Two-sided P value is computed under a slightly more
complicated rule, but is valid

48




Ex: Prevalence of Relapse

9000000000000 000000000000000CFO

* Relapse in 24 months in PSA data
— Test prevalence of 40% (Why?)

. bitest relapse24=0.4

Variable | N Obs k Exp k Assumed p Obs p

relapse24 | 50 22 20 0.400 0.440
Pr(k >= 22) = 0.3299 (one-sided test)
Pr(k <= 22) = 0.7660 (one-sided test)
Pr(k <= 17 or k >= 22) = 0.5668 (two-sided test)

49

Interpretation

9000000000000 000000000000000CFO

* Two-sided inference

— With 95% confidence, we cannot reject the
hypothesis that the true prevalence of relapse
within 24 months is 40% (P= 0.57; 95% CI
30.0% to 58.7%)

50

Exact vs Asymptotic (T test)
+ Differences between asymptotic and t test

— Mean-variance relationship

« t test would use estimated proportion in standard
error instead of hypothesized

— Computation of standard deviation
« t test would divide by n-1 to get variance
— Critical values
* t test uses t distribution instead of standard normal

* In very large samples none of these make a
difference i

Exact vs Asymptotic (T test)

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
. ttest relapse24=0.4
One-sample t test

Variable | Obs Mean StdErr StdDev [95% Conf Int]
relapse24 | 50 .44 .071 .501 .297 .583
mean = mean (relapse24) t = 0.5641
Ho: mean = 0.4 degrees of freedom = 49
Ha: mean < 0.4 Ha: mean != 0.4 Ha: mean > 0.4
Pr(T<t)=0.7124 Pr(|T|>|t|)=0.5753 Pr(T>t)=0.2876

52




Inference for
Binomial Proportions

Large Samples
(Censored)

53

Dichotomized Continuous Data
» Scientifically it is sometimes of interest to
summarize a distribution by the probability
of exceeding some threshold
— E.g., cholesterol greater than 200
—E.g., survival past 5 years
« Statistically it is sometimes most
convenient to do so

— In right censored data, the mean or median

might not be estimable o

Inferential Approach

* In the absence of censoring
— Create dichotomized data

— Inference as just described
» Exact versus approximate

* In the presence of right censoring
— We must use Kaplan-Meier estimates

55

Right Censored Data

* In the presence of right censored data, we
use Kaplan-Meier curves to estimate
proportions exceeding a threshold
— KM estimates asymptotically normally

distributed
* Mean is true proportion

 Standard error depends on true proportion, sample
size, and censoring distribution
— “Greenwood’s Formula”

56




Right Censored Data

9000000000000 000000000000000CFO

* Notation:
Unobserved :
True times to event : {Y]O,TZO,...,Z:)}

Censoring Times : {Cl ,Cysents Cn}

Observed data :
Observation Times: T, = min(T,.O, C, )
Event indicators : D, =

1

1 if7,=T"
0 otherwise

Kaplan-Meier Notation

9000000000000 000000000000000CFO

» Definition of intervals, number at risk,
failures

Ordered distinct observation times :
t,<t, <<t

Time interval : (t 1ot j]
Number at risk at ¢ I N ;
Number of events at ¢ I D ;

58

Kaplan-Meier Hazard Estimates

9000000000000 000000000000000CFO

» Computation of hazard and conditional
probability of survival in interval

D.
Hazard for event in interval : —L

N,

J

Conditional probability of survival in interval :
D.

0 0
Pr(T’ >4, |T Zt“):l_Nj

59

Kaplan-Meier Survival Estimate

9000000000000 000000000000000CFO

» Estimating survival probability
S(t) = Pr(T° > t)

Cumulative probability of survival :
Pr(T° > 1,)=Pr(T® > 1, [T > 1, )Pe(T° > 1, )

A D. D.
S(t)z 1-——L x| 1- /1 Xeoo X 1_&
! N/' Nj—l N1

60




Std Err: Greenwood’s Formula

+ Fairly technical, but for statisticians...

* Hazard estimate is a proportion: D,/ N;

« Variance of hazard estimate from theory about
binomial proportions

* Delta method to get variance of log (1 - D;/N;)

» Then use properties of expectation to get variance of
log S(t) = Xlog (1-D;/N;)

— Noninformative censoring leads to asymptotically
uncorrelated hazard estimates

+ Use delta method to get variance of S(t)
+ Standard error is square root of variance of S(f) .,

Approximate Distribution

» Suppose interested in p = Pr (T > ¢) in
presence of right censoring

Ste)= V[ ste) el )

62

Point Estimate

« Suppose interested in p = Pr (T > ¢) in
presence of right censoring

S(c)+ N s(e) selste)] )

Point estimate:  p =S(c)

63

Cl Using Greenwood’s Formula

» Suppose interested in p = Pr (T > ¢) in
presence of right censoring

S(e)+ N s(e belste)]" )

100(1 — a)% Confidence Interval for p = S(c):
$(e)2 2, .2 525(0))

64




Other Methods for CI

* Cl constructed with Greenwood’s formula
sometimes go beyond 0 or 1

— (This can happen with asymptotic Cl with
uncensored data, as well)

* If we construct Cl based on log (- log S(t))
this won’t happen
— Some statistical programs will give you these
Cl instead

65

Hypothesis Tests

* Testing null hypothesis H,: p = p, in
presence of right censoring

Se)= M (el sl )

Lower one -sided P value: P,. =P Z< S(f —Po
sélS(c)
Lower one -sided P value: P =Pl Z> S(f — Dy
sélS(c)
Two -sided P value: P, =2x min(P,W,_ , PWH) o

Example: PSA Data

* Men with prostate cancer
— Hormonal treatment
— Followed for signs of progression

* Interested in estimating probability of
remaining in remission for three years

— Testing hypothesis that three year survival
probability is 50%
* (Where did this hypothesis come from?)

67

Example: Stata Commands

* Preparing data
—infile ... obstime str8 inrem using psa.txt
—grelapse =0
—replace relapse = 1 if inrem=="no”

+ “Setting” survival variable
— stset obstime relapse

+ Kaplan-Meier estimates
— sts graph, xtitle(“Time from Treatment (mos)”)
— sts list 88




Stata: KM Graph

« sts graph, cens(s) xtitle(“Time (mos)”)
t1(“Probability of Remaining in Remission”)

Kaplan-Meier survival estimate
Probability of Remaining in Remission

Stata: KM Listing

9000000000000 000000000000000CFO

 sts list

Stata: KM Listing
« sts list, at(24 27 30 33 36)
Beg. Survivor std.

Time Total Fail Function Error [95% Conf Int]

24 28 22 0.5600 0.0702 0.4124 0.6842
27 27 2 0.5185 0.0709 0.3725 0.6461
30 25 1 0.4978 0.0710 0.3529 0.6267
33 22 2 0.4545 0.0711 0.3124 0.5860
36 20 1 0.4318 0.0711 0.2913 0.5645

Beg. Net Survivor std.

Time Total Fail Lost Function Error [95% Conf. Int.]

1 50 1 0 0.9800 0.0198 0.8664 0.9972

3 49 3 0 0.9200 0.0384 0.8007 0.9692

6 46 3 0 0.8600 0.0491 0.7286 0.9307

7 43 1 0 0.8400 0.0518 0.7054 0.9166

8 42 1 0 0.8200 0.0543 0.6826 0.9020

9 41 1 0 0.8000 0.0566 0.6602 0.8870

10 40 1 0 0.7800 0.0586 0.6381 0.8716

12 39 2 0 0.7400 0.0620 0.5947 0.8399

14 37 1 0 0.7200 0.0635 0.5735 0.8236

15 36 1 0 0.7000 0.0648 0.5525 0.8070

16 35 2 0 0.6600 0.0670 0.5114 0.7730

17 33 1 0 0.6400 0.0679 0.4911 0.7557

70
Stata: Two-sided P value
:
0990009000000 000000000CCCCCOTOTONOOTTOYYS
disp 2 * norm(- abs( ( 0.4318 - 0.5000) /
72




Interpretation

— The Kaplan-Meier estimate of remaining in
remission for 3 years after hormonal
treatment of prostate cancer is 0.432.

— With 95% confidence, such an observation is
not consistent with a true probability less than
0.291 or greater than .565.

— Based on the P value of 0.337, we cannot
reject the hypothesis that 50% of hormonally
treated men would remain in remission for 3

years. .

Inference for
Rates

74

Incidence Rates

* In some studies, we make inference about
rates of some event over space and / or
time
— E.g., Estimation of cancer incidence rates

* Number of new cases of cancer diagnosed per
person — year of observation
— E.g., Number of colon polyps that grow in a
person during a 3 year period
— E.g., Number of respiratory tract infections in
cystic fibrosis patients 75

Incidence Rates

* A mean, normalized to a standard period
of time and a standard area of space
(population)

— Most often, inference is based on a probability
model involving the Poisson distribution

» Assumptions that lead to Poisson

— In a small interval of space and time, only one event can
occur

— The number of events occurring in nonoverlapping
intervals are independent

« Alternatively, Poisson approximation to binomial 7




Incidence Rates: Data

» Typically, the data for incidence rate data
consist of
— Length of time-space interval a subject is
under observation
* E.g., “Person — years” of observation
— Number of events observed in that subject
— Quite often, aggregate data is all that is
presented
* Total person — years of observation
* Total number of events across subjects 7

Point Estimate

* Use the “sample mean”
Data X,,..., X, independent with X, ~ P(A,) (¢, known)
E(X)=A4, Var(X,)=4,

Y= Z":X,. ~ P(A,t) with ¢ = Zn:ti
i=1 i=l

>
Il

Point estimate :

78

..Approximate Distribution

* From central limit theorem

Data X,,..., X, independent with X, ~ P(Az,) (¢, known)
EX)=A4t, Var(X,)=U,

Y= Zn:Xl. ~ P(A,t)with ¢ = iti
i=1 i=1

i-r. N(i,lj
t t

79

Continuity Correction

* As with the binomial distribution, the
number of events is discrete

— We do not usually bother with the continuity
correction, but it would make sense

Pr(/i < k] = Pr(i k+ 0'5)
t t

Pr(/i > ];] = Pr[i > k _to.sj

IN

80




Asymptotic Cl: Best Approach

* We do best by considering mean-variance
relationship and continuity correction
— Requires quadratic formula or iterative search

100(1 - )% CI for A : (2.4,)

81

Asymptotic Cl: Elevator Stats

» Often we can just use best estimate of A in
standard error for confidence intervals and
ignore the continuity correction
— number of events and ¢ must be large

S
H+

100(1 - )% Cl for A :

Zi—al2

-

82

Asymptotic P values: Best

* We do best by considering mean-variance
relationship and continuity correction

P values for H,: A =4, :

) +L—1,

Lower one -sided P : P, =PrlZ<—2_——
VAt

. A=gi— Py

Upper one -sided P : P, =Pr| Z>—F2——
NENT,

Two -sided P: 2% min(P P .0 53);

lower > upper > *

Asymptotic P values: Elevator

» We still consider mean-variance
relationship but ignore continuity correction

P values for H,: A= 4,:

Lower one -sided P : P,. =PrlZ< Aty
Ao 1t
. i — Py
Upper one -sided P : P =Pr| Z2——=
A/t

Two -sided P: 2 xmin (ler 3B ,().581




Stata Commands

— “ir countvar timevar”
* ir = “incidence rates”
* timevar = person — years (or area)

85

Exact Inference

* In the one sample problem, exact
inference is possible
— It is not as common to use exact inference for
Poisson rates, however

» Usually considering Poisson approximation to the
binomial

* Most often we are in a two (or more) sample
setting

86

Incidence Rates: Comments

* The assumption that incidence rate data
might follow the Poisson distribution is a
very strong one
— Usually the rate is changing over time, which
causes the data to be more variable than the
Poisson analysis might allow fo

— But many times, the real reason we are using
a Poisson analysis is just as an approximation
to the binomial distribution in the presence of
a very low probability of event 87

Inference for
Geometric Means

88




Scientific Indications

* Inference for the geometric mean is
sometimes based on scientific issues

— For some measurements, proportionate
change is more important than additive
differences

* E.g., doubling of creatinine is more indicative of
loss of kidney function than is the difference in
creatinine measurements

* E.g., the clinical relevance of a change in PSA
from 4 to 40 is more similar to a change from 400
to 4000 than from 400 to 436 89

Statistical Indications

» But, the use of the geometric mean rather
than the mean is most often based on
statistical issues
— Relative to the mean, the geometric mean

» Tends to downweight outlying observations

» Tends to stabilize variance across groups when
the original data has SD proportional to the means

» Tends to be better behaved when comparisons
across groups are to be based on ratios
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Inferential Methods

* Analyze means of log transformed data

— For clarity, usually better to back transform
estimates to the original scale
» E.g., geometric mean of PSA, rather than mean of
log PSA
 E.g., ratio of geometric means, rather than
difference of means of log transformed data
— Exceptions do exist when the scientific
community is used to log transformed data

* pH, Richter scale, decibels, titers o

Interpretation

* Note that if the log transformed data is
symmetrically distributed, then the
geometric mean is the same as the

median
* Hence, IF you are willing to presume symmetry
after log transformation, then you can interpret
your parameter as the median
* In this situation, the geometric mean will usually be
a more efficient estimator of the median than

would be the sample median
92




Stata Commands

9000000000000 000000000000000CFO

* “means”
— Provides estimates, Cl for geometric means
 Also arithmetic and harmonic means
» Transforming positive data

- Y“gen newvar= log(var)”

* If zeroes indicate “below limit of detection”
— Replace 0 by one-half lowest nonzero value?

—Use “ci”and/or “ttest”
— Backtransform estimates and Cl with

Example: Geometric Mean of FEV
» Scientific / statistical rationale for
considering geometric mean of FEV
— A multiplicative relationship
* FEV is a volume (cubic dimension)
+ Best predictor is height (linear dimension)

— Greater statistical precision obtained on log
scale

e “disp exp (#)” %
Stata Commands: Estimate, Cl
9909090000000 000000C0CCCCCOTIRIRYOYNOYTYTY
. bysort smoker: means fev
-> smoker = 0
Var | Type Obs Mean [95% Conf. Interval]
fev | Arithmetic 589 2.566143 2.497314 2.634971
| Geometric 589 2.431225 2.366838 2.497364
| Harmonic 589 2.299331 2.236031 2.36632
-> smoker =1
Var | Type Obs Mean [95% Conf. Interval]
fev | Arithmetic 65 3.276862 3.091024 3.462699
| Geometric 65 3.191452 3.011514 3.382142
| Harmonic 65 3.10473 2.927637 3.304627
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Stata Commands: Test
0000000000000 000000000000000 0
.gen logfev = log (fev)
.disp log(3)
1.0986123
. bysort smoker: ttest logfev=1.0986123
-> smoker = 0
Variab | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
logfev | 589 .888 .0136661 .3316671 .861555 .9152357
mean = mean (logfev) t = -15.3824
Ho: mean = 1.09861 degrees of freedom = 588
Ha: mean < 1.09861 Ha: mean != 1.09861 Ha: mean > 1.09861
Pr(T < t) = 0.0000 Pr(|T| > |t]) = 0.0000 Pr(T > t) = 1.0000
-> smoker = 1
Variab | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval
logfev | 65 1.160 .0290495 .2342048 1.102443 1.218509
mean = mean (logfev) t = 2.1296
Ho: mean = 1.09861 degrees of freedom = 64
Ha: mean < 1.09861 Ha: mean != 1.09861 Ha: mean > 1.09861
Pr(T < t) = 0.9815 Pr(IT| > |t]) = 0.0371 Pr(T > t) = 0.0185 96




