

Biost 517

Applied Biostatistics I

Scott S. Emerson, M.D., Ph.D.
Professor of Biostatistics
University of Washington

Lecture 11: Generalizations of One Sample Inference About Means

November 8, 2006

1

© 2002, 2003, 2005 Scott S. Emerson, M.D., Ph.D.

Inference About Means From Matched Samples

3

Lecture Outline

- Inference for Mean Difference
- Inference for Binomial Proportions
- Inference for Poisson Rates
- Inference for Geometric Means

2

Inference for Associations

- Previously we considered inference about the mean of a distribution within a single group
 - Limited application, because we rarely have some absolute hypothesis about the value of a population parameter
 - Exception: means of differences or ratios
 - Natural comparison of differences to 0 and ratios to 1

4

Precision of Inference

- Recall standard error of sample mean from independent variables depends on:
 - Variance of measurements within group
 - Sample size

$$se(\bar{Y}) = \sqrt{\frac{Var(\bar{Y}_i)}{n}}$$

5

Increased Precision

- Difference in means across groups can be estimated by mean difference
 - Comparisons within a pair of positively correlated subjects leads greater precision
 - Adjusting for a highly predictive random effect
 - Correlation of matched measurements near 1

Variance of difference with matched samples :

$$Var(W - X) = Var(W) + Var(X) - 2\rho\sqrt{Var(W)Var(X)}$$

Variance of difference with independent samples :

$$Var(W - X) = Var(W) + Var(X)$$

6

Matched Samples

- Many studies make use of matched samples to study associations
 - E.g., cross-over studies in which each subject receives both treatments *in random order*
 - E.g., “split-plot” designs in which each subject receives both treatments in different locations
 - Eye disease, skin disease
 - E.g., matched subjects in which one of each pair receives a treatment
 - Twin studies, matched communities

7

Collapsing Data on Subjects

- So far: Inference assuming independent measurements
- When we take several measurements on each subject, we often combine them
 - Take difference between matched data
 - Subjects are independent

8

Paired Differences

- Measurements W_i, X_i on i -th subject made under different conditions to be compared
 - Note difference of means $E(W) - E(X)$ is the same as the mean difference $E(W-X)$

For the i -th subject :

$$W_i \sim (\gamma, \omega^2) \quad X_i \sim (\theta, \tau^2) \quad \text{corr}(W_i, X_i) = \rho$$

$$\text{Difference } D_i = W_i - Y_i \sim (\mu, \sigma^2)$$

$$\mu = \gamma - \theta$$

$$\sigma^2 = \omega^2 + \tau^2 - 2\rho\omega\tau$$

9

Inference on Paired Differences

- Scientific (and statistical) questions relate to distribution of paired differences
 - Estimate / test μ = mean of differences using one sample inference about means

10

Statistics on Differences

- Sample mean, sample variance of differences

For the i -th subject : W_i, X_i

Compute differences $D_i = W_i - Y_i$

Summary statistics

$$\bar{D} = \frac{1}{n} \sum_{i=1}^n D_i = \frac{(D_1 + \dots + D_n)}{n}$$

$$s_D^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i - \bar{D})^2$$

11

Inference on Differences

- Inference for $\mu = E(W - Y) = E(W) - E(Y)$

Point estimate : $\hat{\mu} = \bar{D}$

$$100(1-\alpha)\% \text{ CI for } \mu : \quad \bar{D} \pm \frac{s_D}{\sqrt{n}} t_{n-1, 1-\alpha/2}$$

$$\text{P values based on :} \quad \Pr \left(t_{n-1} \leq \frac{\bar{D} - \mu_0}{s_D / \sqrt{n}} \right)$$

12

Stata: Paired t test

- Paired t test is default when you specify two variables
 - `ttest var1 = var2`
 - Tests that the mean of var1 equals the mean of var2 where measurements are made on matched samples
 - Obviously requires data in “wide” format
 - » Rows in your dataset correspond to same subjects
 - Also gives point estimates and 95% CI

13

Example: SEP data

- Compare n35 peaks on right and left
 - (Why? Should we consider dominant side?)

```
. ttest n35R=n35L
Paired t test
Var | Obs     Mean   StdErr   StdDev   [95% ConfInt]
n35R | 250  35.007   .230   3.639  34.554  35.460
n35L | 250  35.178   .232   3.667  34.722  35.635
diff | 250  -.172   .130   2.054  -.427   .085
mean(diff) = mean(n35R - n35L)          t =  -1.3178
Ho: mean(diff) = 0                      deg of fr =  249
Ha: mn(dff) < 0           Ha: mn(dff) != 0      Ha: mn(diff) > 0
Pr(T<t) = 0.0944          Pr(|T|>|t|) = 0.1888  Pr(T > t) = 0.9056
14
```

Example: Interpretation

- Estimate delay of 35.007 msec on R; 35.178 msec on L
 - Difference of 0.172 msec higher on L
 - 95% CI: Such a difference is not unexpected if the true difference were between .427 msec higher on L to .085 higher on R
 - Based on two-sided P value: We would not reject null hypothesis of equal means
 - Two-sided because no reason to presuppose one side higher than other and no different action

15

Inference for Paired Ratios

- Could look at ratio of paired observations
 - Less stable if denominators near 0
- BUT: Ratio of means is not the mean ratio
 - Consider paired observations (Y,X)
 - (4, 2) (8, 1) (12, 3) (16, 5) (20, 4)
 - $E(Y) = 60 / 5 = 12$; $E(X) = 15 / 5 = 3$
 - $E(Y) / E(X) = 12 / 3 = 4$
 - Consider ratios Y / X
 - 2 8 4 3.2 5
 - $E(Y / X) = 22.2 / 5 = 4.44$

16

Stata: Inference for Ratios

- In Stata, we would create ratios

- ```
g n35ratio= n35R / n35L
```
- ```
ttest n35ratio=1
```

One-sample t test

Variable	Obs	Mean	StdErr	StdDev	[95% Conf Int]
n35ratio	250	.997	.00374	.0591	.990 1.004

```
mean = mean(n35ratio)          t = -0.8371
Ho: mean = 1      deg of freedom = 249

Ha: mean < 1      Ha: mean != 1      Ha: mean > 1
Pr(T<t)= 0.2017  Pr(|T|>|t|)= 0.4033  Pr(T>t)= 0.7987
```

Inference for Binomial Proportions

.....
Large Samples
(Uncensored)

18

Binary Random Variables

- Many variables can take on two values
 - For convenience code as 0 or 1
 - Vital status: “Dead” 0 is (alive) or 1 (dead)
 - Sex: “Female” is 0 (male) or 1 (female)
 - Intervention: “Tx” is 0 (control) or 1 (new therapy)
- Sometimes dichotomize variables
 - For scientific reasons (statistically less precise)
 - Blood pressure less than 160 mm Hg
 - PSA less than 4 ng/ml
 - Serum glucose less than 120 mg/dl

19

Statistical Hypotheses

- Scientific questions translated into a statistical question about parameter p
 - Binary variable has Bernoulli (binomial) distribution
 - p is the proportion of the population with the random variable equal to 1
 - p is also the population mean for the random variable

20

Point Estimate

- Use the sample mean

Data $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} B(1, p)$ $E(X_i) = p$ $Var(X_i) = p(1-p)$

Point estimate: $\hat{p} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i = \frac{X_1 + \dots + X_n}{n}$

21

Approximate Distribution

- Use the central limit theorem

Data $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} B(1, p)$ $E(X_i) = p$ $Var(X_i) = p(1-p)$

$$\hat{p} = \bar{X} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

– NOTE: A mean – variance relationship

22

Continuity Correction

- Also, the number of events is discrete
 - In one sample problem we often make a continuity correction

$$\Pr\left(\hat{p} \leq \frac{k}{n}\right) = \Pr\left(\hat{p} \leq \frac{k + 0.5}{n}\right)$$

$$\Pr\left(\hat{p} \geq \frac{k}{n}\right) = \Pr\left(\hat{p} \geq \frac{k - 0.5}{n}\right)$$

23

Asymptotic CI: Best Approach

- We do best by considering mean-variance relationship and continuity correction
 - Requires quadratic formula or iterative search

$$\begin{aligned} 100(1-\alpha)\% \text{ CI for } p : & \quad (\hat{p}_L, \hat{p}_U) \\ \hat{p}_L &= \hat{p} - \frac{1}{2n} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}_L(1-\hat{p}_L)}{n}} \\ \hat{p}_U &= \hat{p} + \frac{1}{2n} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}_U(1-\hat{p}_U)}{n}} \end{aligned}$$

24

Asymptotic CI: Elevator Stats

- Often we can just use best estimate of p in standard error for confidence intervals and ignore the continuity correction
 - $-np$ and $n(1-p)$ must be large

$$100(1-\alpha)\% \text{ CI for } p : \quad \hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

25

Asymptotic P values: Best

- We do best by considering mean-variance relationship and continuity correction

P values for $H_0 : p = p_0$:

$$\text{Lower one - sided P : } P_{lower} = \Pr\left(Z \leq \frac{\hat{p} + \frac{1}{2n} - p_0}{\sqrt{p_0(1-p_0)/n}}\right)$$

$$\text{Upper one - sided P : } P_{upper} = \Pr\left(Z \geq \frac{\hat{p} - \frac{1}{2n} - p_0}{\sqrt{p_0(1-p_0)/n}}\right)$$

$$\text{Two - sided P : } 2 \times \min(P_{lower}, P_{upper}, 0.5)_{26}$$

Asymptotic P values: Elevator

- We still consider mean-variance relationship but ignore continuity correction

P values for $H_0 : p = p_0$:

$$\text{Lower one - sided P : } P_{lower} = \Pr\left(Z \leq \frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}\right)$$

$$\text{Upper one - sided P : } P_{upper} = \Pr\left(Z \geq \frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}\right)$$

$$\text{Two - sided P : } 2 \times \min(P_{lower}, P_{upper}, 0.5)_{27}$$

Stata: Asymptotic Inference

- Stata explicitly provides exact inference
 - If we want asymptotic inference, we could
 - Compute standard errors, Z statistics
 - Use "norm()" function to get P values
 - But why not just use exact inference
 - It is better

28

Inference for Binomial Proportions

Exact Inference (Uncensored)

29

Exact Distribution

- Here, we do not have to rely on asymptotic theory
 - A binary variable must be Bernoulli
 - Sums of independent Bernoulli random variables must be binomial
 - We can use the exact binomial distribution to compute our probabilities
 - (Well, computers can)

30

Binomial Distribution

- Probability theory provides a formula for the distribution of binomial random variables

Data $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} B(1, p)$

$$Y = \sum_{i=1}^n X_i = X_1 + \dots + X_n \sim B(n, p)$$

$$\text{For } k = 0, 1, \dots, n: \quad \Pr(Y = k) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

31

Exact Point Estimate

- Still use the sample mean

$$\text{Data } X_1, \dots, X_n \stackrel{\text{iid}}{\sim} B(1, p) \quad E(X_i) = p \quad \text{Var}(X_i) = p(1-p)$$

$$\text{Point estimate:} \quad \hat{p} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i = \frac{X_1 + \dots + X_n}{n}$$

32

Exact Confidence Intervals

- Use the binomial distribution
 - (But let a computer do it for you)

An exact $100(1 - \alpha)\%$ confidence interval for p based on observation $Y = k$ is (\hat{p}_L, \hat{p}_U) where an iterative search is used to find

$$\Pr[Y \leq k; \hat{p}_U] = \sum_{i=0}^k \frac{n!}{i!(n-i)!} \hat{p}_U^i (1 - \hat{p}_U)^{n-i} = \alpha / 2$$

$$\Pr[Y \geq k; \hat{p}_L] = \sum_{i=k}^n \frac{n!}{i!(n-i)!} \hat{p}_L^i (1 - \hat{p}_L)^{n-i} = \alpha / 2$$

33

Stata: Exact CI for Proportion

- Syntax
 - "ci varlist, binomial"
 - Provides exact confidence intervals
 - (Standard errors are based on asymptotics)

34

Ex: Relapse, Nadir PSA

- PSA dataset: Relapse in 24 months
 - Generating variables of interest

```
. g relapse24=0
. replace relapse24=1 if inrem=="no" & obstime <= 24

. g nadirge2= nadir
. recode nadirge2 min/2=0 2/max=1
```

35

Ex: CI for Prevalence

- Prevalence of relapse in 24 months

```
. ci relapse24, binomial
```

Variable	Obs	Mean	StdErr	95% ConfInt	Binomial	Exact
relapse24	50	.44	.070	.300 .587		

36

Ex: CI for 1-Specificity, Sensitivity

- 1-Specificity, Sensitivity of Nadir PSA > 2 for relapse within 24 months

```
. bysort relapse24: ci nadirge2, binomial  
> relapse24 = 0  
  
Binomial Exact  


| Variable | Obs | Mean | StdErr | [95% Conf Int] |
|----------|-----|------|--------|----------------|
| nadirge2 | 28  | .143 | .066   | .040 .327      |

  
> relapse24 = 1  
  
Binomial Exact  


| Variable | Obs | Mean | StdErr | [95% Conf Int] |
|----------|-----|------|--------|----------------|
| nadirge2 | 22  | .682 | .099   | .451 .861      |


```

37

Ex: Interpretation

- The observed prevalence of relapse within 24 months of 44% was not unusual if the true prevalence were between 30.0% and 58.7%
 - With 95% confidence reject $\text{Prev} < 30.0\%$ or $> 58.7\%$
- The observed sensitivity of 68.2% was not unusual if the true sensitivity were between 45.1% and 86.1%
- The observed specificity of 85.7% was not unusual if the true specificity were between 67.3% and 96.0%

38

Compare to Asymptotic CIs

- Compare exact results to asymptotic CI using t statistics
 - Normally we would use Z statistics
 - Std errors differ by square root of $(n / n-1)$
 - Critical value differs according to df

39

Compare to Asymptotic CIs

```
. ci relapse24  


| Variable  | Obs | Mean | StdErr | [95% ConfInt] |
|-----------|-----|------|--------|---------------|
| relapse24 | 50  | .44  | .071   | .297 .583     |

  
. bysort relapse24: ci nadirge2  
> relapse24 = 0  


| Variable | Obs | Mean | StdErr | [95% ConfInt] |
|----------|-----|------|--------|---------------|
| nadirge2 | 28  | .143 | .067   | .005 .281     |

  
> relapse24 = 1  


| Variable | Obs | Mean | StdErr | [95% ConfInt] |
|----------|-----|------|--------|---------------|
| nadirge2 | 22  | .682 | .102   | .470 .893     |


```

40

Elevator Stats: 0 events in n trials

- Two-sided confidence intervals fail in the case where there are either 0 or n events observed in n Bernoulli trials
 - If $Y=0$, there is no lower confidence bound
 - If $Y=n$, there is no upper confidence bound
- We can, however, derive one-sided confidence bounds in that case

41

Upper Conf Bnd for 0 Events

- Exact upper confidence bound when all observations are 0

Suppose $Y \sim B(n, p)$ and $Y = 0$ is observed

Exact $100(1-\alpha)\%$ upper confidence bound for p is \hat{p}_U

$$\Pr[Y = 0; \hat{p}_U] = (1 - \hat{p}_U)^n = \alpha$$
$$\Downarrow$$

$$\hat{p}_U = 1 - \alpha^{1/n}$$

42

Large Sample Approximation

$$(1 - \hat{p}_U)^n = \alpha \Rightarrow n \log(1 - \hat{p}_U) = \log(\alpha)$$

$$\text{For small } \hat{p}_U \quad \log(1 - \hat{p}_U) \approx -\hat{p}_U$$

$$\text{so for large } n \Rightarrow \hat{p}_U \approx -\frac{\log(\alpha)}{n}$$

43

Elevator Stats: 0 Events in n trials

- “Three over n rule”
 - $\log(.05) = -2.9957$
 - In large samples, when 0 events observed, the 95% upper confidence bound for p is approximately $3/n$
- 99% upper confidence bound
 - $\log(.01) = -4.605$
 - Use $4.6/n$ as 99% upper confidence bound

44

Elevator Stats vs Exact

- When $X=0$ events observed in n Bernoulli trials

n	95% bound		99% bound	
	Exact	3/n	Exact	4.6/n
2	.7764	1.50	.9000	2.3000
5	.4507	.60	.6019	.9200
10	.2589	.30	.3690	.4600
20	.1391	.15	.2057	.2300
30	.0950	.10	.1423	.1533
50	.0582	.06	.0880	.0920
100	.0295	.03	.0450	.0460

45

Elevator Stats: n Events in n trials

- We can also use the “Three over n rule” to find the lower confidence bound for p when every subject has an event
 - Lower 95% confidence bound is $1 - 3 / n$

46

Exact Tests for a Proportion

- Use binomial distribution under the null
 - (But let a computer do it for you)

For $Y \sim B(n, p)$ and observation $Y = k$:

Test $H_0 : p = p_0$, calculate P values by

$$\text{Upper one-sided: } P_{upper} = \Pr[Y \geq k; p_0] = \sum_{i=k}^n \frac{n!}{i!(n-i)!} p_0^i (1-p_0)^{n-i}$$

$$\text{Lower one-sided: } P_{lower} = \Pr[Y \leq k; p_0] = \sum_{i=0}^k \frac{n!}{i!(n-i)!} p_0^i (1-p_0)^{n-i}$$

$$\text{Two-sided (easy): } 2 \times \min(P_{lower}, P_{upper}, 0.5)$$

47

Stata: Tests for Proportion

- Syntax
 - `bitest var = #p`
 - Provides exact test that proportion = #p
 - Gives upper and lower one-sided, two-sided P values
 - Two-sided P value is computed under a slightly more complicated rule, but is valid

48

Ex: Prevalence of Relapse

- Relapse in 24 months in PSA data

– Test prevalence of 40% (Why?)

```
. bitest relapse24=0.4
```

Variable	N	Obs	k	Exp k	Assumed p	Obs p
relapse24	50	22	20	0.400	0.440	

Pr(k >= 22) = 0.3299 (one-sided test)
Pr(k <= 22) = 0.7660 (one-sided test)
Pr(k <= 17 or k >= 22) = 0.5668 (two-sided test)

49

Interpretation

- Two-sided inference

– With 95% confidence, we cannot reject the hypothesis that the true prevalence of relapse within 24 months is 40% (P= 0.57; 95% CI 30.0% to 58.7%)

50

Exact vs Asymptotic (T test)

- Differences between asymptotic and t test
 - Mean-variance relationship
 - t test would use estimated proportion in standard error instead of hypothesized
 - Computation of standard deviation
 - t test would divide by n-1 to get variance
 - Critical values
 - t test uses t distribution instead of standard normal
- In very large samples none of these make a difference

51

Exact vs Asymptotic (T test)

```
. ttest relapse24=0.4
One-sample t test
Variable | Obs  Mean  StdErr StdDev  [95% Conf Int]
relapse24 | 50   .44   .071   .501   .297   .583
mean = mean(relapse24)          t = 0.5641
Ho: mean = 0.4      degrees of freedom = 49
Ha: mean < 0.4      Ha: mean != 0.4      Ha: mean > 0.4
Pr(T<t)=0.7124  Pr(|T|>|t|)=0.5753  Pr(T>t)=0.2876
```

52

Inference for Binomial Proportions

.....
Large Samples
(Censored)

53

Inferential Approach

.....

- In the absence of censoring
 - Create dichotomized data
 - Inference as just described
 - Exact versus approximate
- In the presence of right censoring
 - We must use Kaplan-Meier estimates

55

Dichotomized Continuous Data

.....

- Scientifically it is sometimes of interest to summarize a distribution by the probability of exceeding some threshold
 - E.g., cholesterol greater than 200
 - E.g., survival past 5 years
- Statistically it is sometimes most convenient to do so
 - In right censored data, the mean or median might not be estimable

54

Right Censored Data

.....

- In the presence of right censored data, we use Kaplan-Meier curves to estimate proportions exceeding a threshold
 - KM estimates asymptotically normally distributed
 - Mean is true proportion
 - Standard error depends on true proportion, sample size, and censoring distribution
 - “Greenwood’s Formula”

56

Right Censored Data

- Notation:

Unobserved :

$$\text{True times to event : } \{T_1^0, T_2^0, \dots, T_n^0\}$$

$$\text{Censoring Times : } \{C_1, C_2, \dots, C_n\}$$

Observed data :

$$\text{Observation Times : } T_i = \min(T_i^0, C_i)$$

$$\text{Event indicators : } D_i = \begin{cases} 1 & \text{if } T_i = T_i^0 \\ 0 & \text{otherwise} \end{cases}$$

57

Kaplan-Meier Notation

- Definition of intervals, number at risk, failures

Ordered distinct observation times :

$$t_1 \leq t_2 \leq \dots \leq t_k$$

$$\text{Time interval : } (t_{j-1}, t_j]$$

$$\text{Number at risk at } t_j : N_j$$

$$\text{Number of events at } t_j : D_j$$

58

Kaplan-Meier Hazard Estimates

- Computation of hazard and conditional probability of survival in interval

$$\text{Hazard for event in interval : } \frac{D_j}{N_j}$$

Conditional probability of survival in interval :

$$\Pr(T^0 \geq t_j | T^0 \geq t_{j-1}) = 1 - \frac{D_j}{N_j}$$

59

Kaplan-Meier Survival Estimate

- Estimating survival probability

$$S(t) = \Pr(T^0 > t)$$

Cumulative probability of survival :

$$\Pr(T^0 > t_j) = \Pr(T^0 > t_j | T^0 > t_{j-1}) \Pr(T^0 > t_{j-1})$$

$$\begin{aligned} \hat{S}(t_j) &= \left(1 - \frac{D_j}{N_j}\right) \times \left(1 - \frac{D_{j-1}}{N_{j-1}}\right) \times \dots \times \left(1 - \frac{D_1}{N_1}\right) \\ &= \prod_{i=1}^j \left(1 - \frac{D_i}{N_i}\right) \end{aligned}$$

60

Std Err: Greenwood's Formula

- Fairly technical, but for statisticians...
 - Hazard estimate is a proportion: D_j / N_j
 - Variance of hazard estimate from theory about binomial proportions
 - Delta method to get variance of $\log (1 - D_j / N_j)$
 - Then use properties of expectation to get variance of $\log S(t) = \sum \log (1 - D_j / N_j)$
 - Noninformative censoring leads to asymptotically uncorrelated hazard estimates
 - Use delta method to get variance of $S(t)$
 - Standard error is square root of variance of $S(t)$

61

Approximate Distribution

- Suppose interested in $p = \Pr (T^0 \geq c)$ in presence of right censoring

$$\hat{S}(c) \sim N\left(S(c), [se(\hat{S}(c))]^2 \right)$$

62

Point Estimate

- Suppose interested in $p = \Pr (T^0 \geq c)$ in presence of right censoring

$$\hat{S}(c) \sim N\left(S(c), [se(\hat{S}(c))]^2 \right)$$

Point estimate: $\hat{p} = \hat{S}(c)$

63

CI Using Greenwood's Formula

- Suppose interested in $p = \Pr (T^0 \geq c)$ in presence of right censoring

$$\hat{S}(c) \sim N\left(S(c), [se(\hat{S}(c))]^2 \right)$$

100(1 - α)% Confidence Interval for $p = S(c)$:

$$\hat{S}(c) \pm z_{1-\alpha/2} se(\hat{S}(c))$$

64

Other Methods for CI

- CI constructed with Greenwood's formula sometimes go beyond 0 or 1
 - (This can happen with asymptotic CI with uncensored data, as well)
- If we construct CI based on $\log(-\log S(t))$ this won't happen
 - Some statistical programs will give you these CI instead

65

Hypothesis Tests

- Testing null hypothesis $H_0: p = p_0$ in presence of right censoring

$$\hat{S}(c) \sim N\left(S(c), [se(\hat{S}(c))]^2 \right)$$

$$\text{Lower one-sided P value: } P_{lower} = \Pr\left(Z \leq \frac{\hat{S}(c) - p_0}{se(\hat{S}(c))} \right)$$

$$\text{Lower one-sided P value: } P_{upper} = \Pr\left(Z \geq \frac{\hat{S}(c) - p_0}{se(\hat{S}(c))} \right)$$

$$\text{Two-sided P value: } P_{two} = 2 \times \min(P_{lower}, P_{upper})$$

66

Example: PSA Data

- Men with prostate cancer
 - Hormonal treatment
 - Followed for signs of progression
- Interested in estimating probability of remaining in remission for three years
 - Testing hypothesis that three year survival probability is 50%
 - (Where did this hypothesis come from?)

67

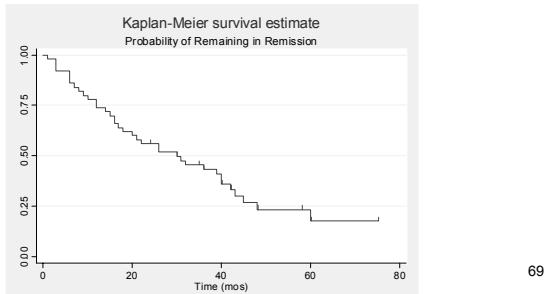
Example: Stata Commands

- Preparing data
 - infile ... obstime **str8 inrem** using psa.txt
 - g relapse = 0
 - replace relapse = 1 if inrem=="no"
- "Setting" survival variable
 - stset obstime relapse
- Kaplan-Meier estimates
 - sts graph, xtitle("Time from Treatment (mos)")
 - sts list

68

Stata: KM Graph

- sts graph, cens(s) xtitle("Time (mos)") t1("Probability of Remaining in Remission")



69

Stata: KM Listing

- sts list

Time	Beg.	Total	Net	Survivor	Std.	[95% Conf. Int.]
				Function	Error	
1	50	1	0	0.9800	0.0198	0.8664 0.9972
3	49	3	0	0.9200	0.0384	0.8007 0.9692
6	46	3	0	0.8600	0.0491	0.7286 0.9307
7	43	1	0	0.8400	0.0518	0.7054 0.9166
8	42	1	0	0.8200	0.0543	0.6826 0.9020
9	41	1	0	0.8000	0.0566	0.6602 0.8870
10	40	1	0	0.7800	0.0586	0.6381 0.8716
12	39	2	0	0.7400	0.0620	0.5947 0.8399
14	37	1	0	0.7200	0.0635	0.5735 0.8236
15	36	1	0	0.7000	0.0648	0.5525 0.8070
16	35	2	0	0.6600	0.0670	0.5114 0.7730
17	33	1	0	0.6400	0.0679	0.4911 0.7557

--more--

70

Stata: KM Listing

- sts list, at(24 27 30 33 36)

Time	Beg.	Total	Fail	Survivor	Std.	[95% Conf. Int.]
				Function	Error	
24	28	22	0.5600	0.0702	0.4124	0.6842
27	27	2	0.5185	0.0709	0.3725	0.6461
30	25	1	0.4978	0.0710	0.3529	0.6267
33	22	2	0.4545	0.0711	0.3124	0.5860
36	20	1	0.4318	0.0711	0.2913	0.5645

71

Stata: Two-sided P value

```
disp 2 * norm(- abs( ( 0.4318 - 0.5000) / 0.0711))  
.33745177
```

72

Interpretation

- The Kaplan-Meier estimate of remaining in remission for 3 years after hormonal treatment of prostate cancer is 0.432.
- With 95% confidence, such an observation is not consistent with a true probability less than 0.291 or greater than .565.
- Based on the P value of 0.337, we cannot reject the hypothesis that 50% of hormonally treated men would remain in remission for 3 years.

73

Inference for Rates

74

Incidence Rates

- In some studies, we make inference about rates of some event over space and / or time
 - E.g., Estimation of cancer incidence rates
 - Number of new cases of cancer diagnosed per person – year of observation
 - E.g., Number of colon polyps that grow in a person during a 3 year period
 - E.g., Number of respiratory tract infections in cystic fibrosis patients

75

Incidence Rates

- A mean, normalized to a standard period of time and a standard area of space (population)
 - Most often, inference is based on a probability model involving the Poisson distribution
 - Assumptions that lead to Poisson
 - In a small interval of space and time, only one event can occur
 - The number of events occurring in nonoverlapping intervals are independent
 - Alternatively, Poisson approximation to binomial

76

Incidence Rates: Data

- Typically, the data for incidence rate data consist of
 - Length of time-space interval a subject is under observation
 - E.g., “Person – years” of observation
 - Number of events observed in that subject
 - Quite often, aggregate data is all that is presented
 - Total person – years of observation
 - Total number of events across subjects

77

Approximate Distribution

- From central limit theorem

Data X_1, \dots, X_n independent with $X_i \sim P(\lambda t_i)$ (t_i known)

$$E(X_i) = \lambda t_i \quad \text{Var}(X_i) = \lambda t_i$$

$$Y = \sum_{i=1}^n X_i \sim P(\lambda_0 t) \text{ with } t = \sum_{i=1}^n t_i$$

$$\hat{\lambda} = \frac{Y}{t} \sim N\left(\lambda, \frac{\lambda}{t}\right)$$

79

Point Estimate

- Use the “sample mean”

Data X_1, \dots, X_n independent with $X_i \sim P(\lambda t_i)$ (t_i known)

$$E(X_i) = \lambda t_i \quad \text{Var}(X_i) = \lambda t_i$$

$$Y = \sum_{i=1}^n X_i \sim P(\lambda_0 t) \text{ with } t = \sum_{i=1}^n t_i$$

Point estimate :

$$\hat{\lambda} = \frac{Y}{t}$$

78

Continuity Correction

- As with the binomial distribution, the number of events is discrete
 - We do not usually bother with the continuity correction, but it would make sense

$$\Pr\left(\hat{\lambda} \leq \frac{k}{t}\right) = \Pr\left(\hat{\lambda} \leq \frac{k + 0.5}{t}\right)$$

$$\Pr\left(\hat{\lambda} \geq \frac{k}{t}\right) = \Pr\left(\hat{\lambda} \geq \frac{k - 0.5}{t}\right)$$

80

Asymptotic CI: Best Approach

- We do best by considering mean-variance relationship and continuity correction
 - Requires quadratic formula or iterative search

100(1 - α)% CI for λ : $(\hat{\lambda}_L, \hat{\lambda}_U)$

$$\hat{\lambda}_L = \hat{\lambda} - \frac{1}{2t} - z_{1-\alpha/2} \sqrt{\frac{\hat{\lambda}_L}{t}}$$

$$\hat{\lambda}_U = \hat{\lambda} + \frac{1}{2t} + z_{1-\alpha/2} \sqrt{\frac{\hat{\lambda}_U}{t}}$$

81

Asymptotic CI: Elevator Stats

- Often we can just use best estimate of λ in standard error for confidence intervals and ignore the continuity correction
 - number of events and t must be large

100(1 - α)% CI for λ : $\hat{\lambda} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{\lambda}}{t}}$

82

Asymptotic P values: Best

- We do best by considering mean-variance relationship and continuity correction

P values for $H_0 : \lambda = \lambda_0$:

Lower one - sided P : $P_{lower} = \Pr\left(Z \leq \frac{\hat{\lambda} + \frac{1}{2t} - \lambda_0}{\sqrt{\lambda_0/t}}\right)$

Upper one - sided P : $P_{upper} = \Pr\left(Z \geq \frac{\hat{\lambda} - \frac{1}{2t} - p_0}{\sqrt{\lambda_0/t}}\right)$

Two - sided P : $2 \times \min(P_{lower}, P_{upper}, 0.5)$

Asymptotic P values: Elevator

- We still consider mean-variance relationship but ignore continuity correction

P values for $H_0 : \lambda = \lambda_0$:

Lower one - sided P : $P_{lower} = \Pr\left(Z \leq \frac{\hat{\lambda} - \lambda_0}{\sqrt{\lambda_0/t}}\right)$

Upper one - sided P : $P_{upper} = \Pr\left(Z \geq \frac{\hat{\lambda} - p_0}{\sqrt{\lambda_0/t}}\right)$

Two - sided P : $2 \times \min(P_{lower}, P_{upper}, 0.5)$

84

Stata Commands

- “*ir countvar timevar*”
 - *ir* = “incidence rates”
 - *timevar* = person – years (or area)

85

Exact Inference

- In the one sample problem, exact inference is possible
 - It is not as common to use exact inference for Poisson rates, however
 - Usually considering Poisson approximation to the binomial
 - Most often we are in a two (or more) sample setting

86

Incidence Rates: Comments

- The assumption that incidence rate data might follow the Poisson distribution is a very strong one
 - Usually the rate is changing over time, which causes the data to be more variable than the Poisson analysis might allow for
 - But many times, the real reason we are using a Poisson analysis is just as an approximation to the binomial distribution in the presence of a very low probability of event

87

Inference for Geometric Means

88

Scientific Indications

- Inference for the geometric mean is sometimes based on scientific issues
 - For some measurements, proportionate change is more important than additive differences
 - E.g., doubling of creatinine is more indicative of loss of kidney function than is the difference in creatinine measurements
 - E.g., the clinical relevance of a change in PSA from 4 to 40 is more similar to a change from 400 to 4000 than from 400 to 436

89

Statistical Indications

- But, the use of the geometric mean rather than the mean is most often based on statistical issues
 - Relative to the mean, the geometric mean
 - Tends to downweight outlying observations
 - Tends to stabilize variance across groups when the original data has SD proportional to the means
 - Tends to be better behaved when comparisons across groups are to be based on ratios

90

Inferential Methods

- Analyze means of log transformed data
 - For clarity, usually better to back transform estimates to the original scale
 - E.g., geometric mean of PSA, rather than mean of log PSA
 - E.g., ratio of geometric means, rather than difference of means of log transformed data
 - Exceptions do exist when the scientific community is used to log transformed data
 - pH, Richter scale, decibels, titers

91

Interpretation

- Note that if the log transformed data is symmetrically distributed, then the geometric mean is the same as the median
 - Hence, IF you are willing to presume symmetry after log transformation, then you can interpret your parameter as the median
 - In this situation, the geometric mean will usually be a more efficient estimator of the median than would be the sample median

92

Stata Commands

- “means”
 - Provides estimates, CI for geometric means
 - Also arithmetic and harmonic means
- Transforming positive data
 - “gen newvar= log(var)”
 - If zeroes indicate “below limit of detection”
 - Replace 0 by one-half lowest nonzero value?
 - Use “ci” and / or “ttest”
 - Backtransform estimates and CI with
 - “disp exp(#)”

93

Example: Geometric Mean of FEV

- Scientific / statistical rationale for considering geometric mean of FEV
 - A multiplicative relationship
 - FEV is a volume (cubic dimension)
 - Best predictor is height (linear dimension)
 - Greater statistical precision obtained on log scale

94

Stata Commands: Estimate, CI

```
.bysort smoker: means fev
-> smoker = 0
Var | Type      Obs      Mean      [95% Conf. Interval]
fev | Arithmetic 589  2.566143  2.497314  2.634971
    | Geometric   589  2.431225  2.366838  2.497364
    | Harmonic   589  2.299331  2.236031  2.36632
-> smoker = 1
Var | Type      Obs      Mean      [95% Conf. Interval]
fev | Arithmetic  65  3.276862  3.091024  3.462699
    | Geometric   65  3.191452  3.011514  3.382142
    | Harmonic   65  3.10473   2.927637  3.304627
```

95

Stata Commands: Test

```
.gen logfev = log(fev)
_DISP log(3)
1.0986123
.bysort smoker: ttest logfev=1.0986123
-> smoker = 0
Variab | Obs      Mean      Std. Err.      Std. Dev.      [95% Conf. Interval]
logfev | 589     .888     .0136661     .3316671     .861555     .9152357
mean = mean(logfev)
t = -15.3824
Ho: mean = 1.09861      degrees of freedom =      588
Ha: mean < 1.09861      Ha: mean != 1.09861      Ha: mean > 1.09861
Pr(|T| < t) = 0.0000      Pr(|T| > |t|) = 0.0000      Pr(T > t) = 1.0000
-> smoker = 1
Variab | Obs      Mean      Std. Err.      Std. Dev.      [95% Conf. Interval]
logfev | 65      1.160     .0290495     .2342048     1.102443     1.218509
mean = mean(logfev)
t = 2.1296
Ho: mean = 1.09861      degrees of freedom =      64
Ha: mean < 1.09861      Ha: mean != 1.09861      Ha: mean > 1.09861
Pr(|T| < t) = 0.9815      Pr(|T| > |t|) = 0.0371      Pr(T > t) = 0.0185
```

96