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Lecture Outline

• Inference for Mean Difference
• Inference for Binomial Proportions
• Inference for Poisson Rates
• Inference for Geometric Means

3

Inference About Means From 
Matched Samples

4

Inference for Associations

• Previously we considered inference about 
the mean of a distribution within a single 
group
– Limited application, because we rarely have 

some absolute hypothesis about the value of 
a population parameter

– Exception: means of differences or ratios
• Natural comparison of differences to 0 and ratios 

to 1
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Precision of Inference

• Recall standard error of sample mean 
from independent variables depends on:
– Variance of measurements within group
– Sample size
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Increased Precision

• Difference in means across groups can be 
estimated by mean difference
– Comparisons within a pair of positively 

correlated subjects leads greater precision
• Adjusting for a highly predictive random effect

– Correlation of matched measurements near 1
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Matched Samples

• Many studies make use of matched 
samples to study associations
– E.g., cross-over studies in which each subject 

receives both treatments in random order
– E.g., “split-plot” designs in which each subject 

receives both treatments in different locations
• Eye disease, skin disease

– E.g., matched subjects in which one of each 
pair receives a treatment

• Twin studies, matched communities 8

Collapsing Data on Subjects

• So far: Inference assuming independent 
measurements

• When we take several measurements on 
each subject, we often combine them
– Take difference between matched data
– Subjects are independent



Applied Biostatistics I, AUT 2006 November 6, 2006

Part 1:3

9

Paired Differences

• Measurements Wi, Xi on i-th subject made 
under different conditions to be compared
– Note difference of means E(W) – E(X) is the 

same as the mean difference E(W-X)
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Inference on Paired Differences

• Scientific (and statistical) questions relate 
to distribution of paired differences
– Estimate / test µ = mean of differences using 

one sample inference about means

11

Statistics on Differences

• Sample mean, sample variance of 
differences
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Inference on Differences

• Inference for µ = E(W - Y) = E(W) - E(Y)
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Stata: Paired t test

• Paired t test is default when you specify 
two variables
– “ttest var1 = var2”

• Tests that the mean of var1 equals the mean of 
var2 where measurements are made on matched 
samples

– Obviously requires data in “wide” format
» Rows in your dataset correspond to same subjects

• Also gives point estimates and 95% CI

14

Example: SEP data

• Compare n35 peaks on right and left
– (Why? Should we consider dominant side?)

. ttest n35R=n35L
Paired t test
Var | Obs Mean  StdErr StdDev [95% ConfInt] 
n35R | 250  35.007    .230   3.639  34.554  35.460
n35L | 250  35.178    .232   3.667  34.722  35.635
diff | 250   -.172    .130   2.054   -.427    .085
mean(diff) = mean(n35R - n35L)       t =  -1.3178
Ho: mean(diff) = 0           deg of fr =      249
Ha: mn(dff) < 0      Ha: mn(dff) != 0      Ha: mn(diff) > 0
Pr(T<t)= 0.0944    Pr(|T|>|t|) = 0.1888   Pr(T > t) = 0.9056

15

Example: Interpretation

• Estimate delay of 35.007 msec on R;   
35.178 msec on L
– Difference of 0.172 msec higher on L
– 95% CI: Such a difference is not unexpected if 

the true difference were between .427 msec
higher on L to .085 higher on R

– Based on two-sided P value: We would not 
reject null hypothesis of equal means

• Two-sided because no reason to presuppose one 
side higher than other and no different action 16

Inference for Paired Ratios

• Could look at ratio of paired observations
– Less stable if denominators near 0

• BUT: Ratio of means is not the mean ratio
– Consider paired observations (Y,X)

• (4, 2)  (8, 1)  (12, 3)  (16, 5)  (20, 4)
• E(Y) = 60 / 5 = 12;  E(X) = 15 / 5 =   3
• E(Y) / E(X) = 12  / 3 = 4

– Consider ratios Y / X
• 2         8         4          3.2        5
• E(Y / X) = 22.2 / 5 = 4.44
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Stata: Inference for Ratios

• In Stata, we would create ratios
•g n35ratio= n35R / n35L
•ttest n35ratio=1

One-sample t test
Variable | Obs Mean  StdErr StdDev [95% Conf Int]
n35ratio | 250  .997  .00374  .0591   .990    1.004

mean = mean(n35ratio)                t =  -0.8371
Ho: mean = 1         deg of freedom =      249

Ha: mean < 1        Ha: mean != 1        Ha: mean > 1
Pr(T<t)= 0.2017  Pr(|T|>|t|)= 0.4033  Pr(T>t)= 0.7983 18

Inference for
Binomial Proportions

Large Samples
(Uncensored)

19

Binary Random Variables

• Many variables can take on two values
– For convenience code as 0 or 1

• Vital status: “Dead” 0  is (alive) or 1 (dead)
• Sex: “Female” is 0 (male) or 1 (female)
• Intervention: “Tx” is 0 (control) or 1 (new therapy)

• Sometimes dichotomize variables
– For scientific reasons (statistically less precise)

• Blood pressure less than 160 mm Hg
• PSA less than 4 ng/ml
• Serum glucose less than 120 mg/dl 20

Statistical Hypotheses

• Scientific questions translated into a 
statistical question about parameter p
– Binary variable has Bernoulli (binomial) distn

• p is the proportion of the population with the 
random variable equal to 1

• p is also the population mean for the random 
variable
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Point Estimate

• Use the sample mean
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Approximate Distribution

• Use the central limit theorem

– NOTE: A mean – variance relationship
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Continuity Correction

• Also, the number of events is discrete
– In one sample problem we often make a 

continuity correction
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Asymptotic CI: Best Approach

• We do best by considering mean-variance 
relationship and continuity correction
– Requires quadratic formula or iterative search
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Asymptotic CI: Elevator Stats

• Often we can just use best estimate of p in 
standard error for confidence intervals and 
ignore the continuity correction
– np and n(1-p) must be large
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Asymptotic P values: Best

• We do best by considering mean-variance 
relationship and continuity correction
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Asymptotic P values: Elevator

• We still consider mean-variance 
relationship but ignore continuity correction
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Stata: Asymptotic Inference

• Stata explicitly provides exact inference
– If we want asymptotic inference, we could

• Compute standard errors, Z statistics
• Use “norm( )” function to get P values

– But why not just use exact inference
• It is better
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Inference for
Binomial Proportions

Exact Inference
(Uncensored)

30

Exact Distribution

• Here, we do not have to rely on asymptotic 
theory
– A binary variable must be Bernoulli
– Sums of independent Bernoulli random 

variables must be binomial
– We can use the exact binomial distribution to 

compute our probabilities
• (Well, computers can)

31

Binomial Distribution

• Probability theory provides a formula for 
the distribution of binomial random 
variables
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Exact Point Estimate

• Still use the sample mean
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Exact Confidence Intervals

• Use the binomial distribution
– (But let a computer do it for you)
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Stata: Exact CI for Proportion

• Syntax
– “ci varlist, binomial”

• Provides exact confidence intervals
• (Standard errors are based on asymptotics)

35

Ex: Relapse, Nadir PSA

• PSA dataset: Relapse in 24 months
– Generating variables of interest

. g relapse24=0

. replace relapse24=1 if inrem=="no" & obstime <= 24

. g nadirge2= nadir

. recode nadirge2 min/2=0 2/max=1

36

Ex: CI for Prevalence 

• Prevalence of relapse in 24 months
. ci relapse24, binomial

Binomial Exact
Variable | Obs Mean  StdErr [95% ConfInt]

relapse24 |  50   .44   .070    .300   .587
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Ex: CI for 1-Specificity, Sensitivity 

• 1-Specificity, Sensitivity of Nadir PSA > 2 
for relapse within 24 months

. bysort relapse24: ci nadirge2, binomial
-> relapse24 = 0

Binomial Exact
Variable | Obs Mean  StdErr [95% Conf Int]
nadirge2 |  28    .143   .066     .040    .327

-> relapse24 = 1
Binomial Exact

Variable | Obs Mean  StdErr [95% Conf Int]
nadirge2 |  22    .682    .099    .451    .861 38

Ex: Interpretation

– The observed prevalence of relapse within 24 
months of 44% was not unusual if the true 
prevalence were between 30.0% and 58.7%

» With 95% confidence reject Prev < 30.0% or >58.7%

– The observed sensitivity of 68.2% was not 
unusual if the true sensitivity were between 
45.1% and 86.1%

– The observed specificity of 85.7% was not 
unusual if the true specificity were between 
67.3% and 96.0%

39

Compare to Asymptotic CIs

• Compare exact results to asymptotic CI 
using t statistics
– Normally we would use Z statistics

– Std errors differ by square root of (n / n-1)
– Critical value differs according to df

40

Compare to Asymptotic CIs
. ci relapse24
Variable | Obs Mean  StdErr [95% ConfInt]
relapse24 |  50   .44    .071   .297   .583

. bysort relapse24: ci nadirge2
-> relapse24 = 0
Variable | Obs Mean  StdErr [95% ConfInt]
nadirge2 |  28   .143   .067   .005   .281

-> relapse24 = 1
Variable | Obs Mean  StdErr [95% ConfInt]
nadirge2 |  22   .682   .102   .470   .893
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Elevator Stats: 0 events in n trials

• Two-sided confidence intervals fail in the 
case where there are either 0 or n events 
observed in n Bernoulli trials

• If Y=0, there is no lower confidence bound
• If Y=n, there is no upper confidence bound

– We can, however, derive one-sided 
confidence bounds in that case

42

Upper Conf Bnd for 0 Events

• Exact upper confidence bound when all 
observations are 0
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Large Sample Approximation
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Elevator Stats: 0 Events in n trials

• “Three over n rule”
– log (.05) = -2.9957
– In large samples, when 0 events observed, 

the 95% upper confidence bound for p is 
approximately 3 / n

• 99% upper confidence bound
– log (.01) = -4.605
– Use 4.6 / n as 99% upper confidence bound
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Elevator Stats vs Exact

• When X=0 events observed in n Bernoulli 
trials

95% bound 99% bound
n     Exact   3/n       Exact   4.6/n
2    .7764   1.50      .9000  2.3000
5    .4507    .60      .6019   .9200
10    .2589    .30      .3690   .4600
20    .1391    .15      .2057   .2300
30    .0950    .10      .1423   .1533
50    .0582    .06      .0880   .0920
100    .0295    .03      .0450   .0460

46

Elevator Stats: n Events in n trials

• We can also use the “Three over n rule” to 
find the lower confidence bound for p
when every subject has an event
– Lower 95% confidence bound is 1 – 3 / n

47

Exact Tests for a Proportion

• Use binomial distribution under the null
– (But let a computer do it for you)
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Stata: Tests for Proportion

• Syntax
– “bitest var = #p”

• Provides exact test that proportion = #p
• Gives upper and lower one-sided, two-sided P 

values
– Two-sided P value is computed under a slightly more 

complicated rule, but is valid



Applied Biostatistics I, AUT 2006 November 6, 2006

Part 1:13

49

Ex: Prevalence of Relapse

• Relapse in 24 months in PSA data
– Test prevalence of 40% (Why?)

. bitest relapse24=0.4

Variable |   N  Obs k   Exp k  Assumed p   Obs p
relapse24 |  50    22     20     0.400      0.440

Pr(k >= 22)            = 0.3299  (one-sided test)
Pr(k <= 22)            = 0.7660  (one-sided test)
Pr(k <= 17 or k >= 22) = 0.5668  (two-sided test)

50

Interpretation

• Two-sided inference
– With 95% confidence, we cannot reject the 

hypothesis that the true prevalence of relapse 
within 24 months is 40% (P= 0.57; 95% CI 
30.0% to 58.7%)                                    

51

Exact vs Asymptotic (T test)

• Differences between asymptotic and t test
– Mean-variance relationship

• t test would use estimated proportion in standard 
error instead of hypothesized

– Computation of standard deviation
• t test would divide by n-1 to get variance

– Critical values
• t test uses t distribution instead of standard normal

• In very large samples none of these make a 
difference 52

Exact vs Asymptotic (T test)
. ttest relapse24=0.4
One-sample t test
Variable | Obs Mean  StdErr StdDev [95% Conf Int]
relapse24 |  50   .44    .071   .501    .297    .583

mean = mean(relapse24)                  t =   0.5641
Ho: mean = 0.4         degrees of freedom =       49

Ha: mean < 0.4    Ha: mean != 0.4       Ha: mean > 0.4
Pr(T<t)=0.7124  Pr(|T|>|t|)=0.5753      Pr(T>t)=0.2876
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Inference for
Binomial Proportions

Large Samples
(Censored)

54

Dichotomized Continuous Data

• Scientifically it is sometimes of interest to 
summarize a distribution by the probability 
of exceeding some threshold
– E.g., cholesterol greater than 200
– E.g., survival past 5 years

• Statistically it is sometimes most 
convenient to do so
– In right censored data, the mean or median 

might not be estimable

55

Inferential Approach

• In the absence of censoring
– Create dichotomized data
– Inference as just described

• Exact versus approximate

• In the presence of right censoring
– We must use Kaplan-Meier estimates

56

Right Censored Data

• In the presence of right censored data, we 
use Kaplan-Meier curves to estimate 
proportions exceeding a threshold
– KM estimates asymptotically normally 

distributed
• Mean is true proportion
• Standard error depends on true proportion, sample 

size, and censoring distribution
– “Greenwood’s Formula”



Applied Biostatistics I, AUT 2006 November 6, 2006

Part 1:15

57

Right Censored Data

• Notation:
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Kaplan-Meier Notation

• Definition of intervals, number at risk, 
failures 
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Kaplan-Meier Hazard Estimates

• Computation of hazard and conditional 
probability of survival in interval 
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Kaplan-Meier Survival Estimate

• Estimating survival probability 
S(t) = Pr(T0 > t)
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Std Err: Greenwood’s Formula

• Fairly technical, but for statisticians…
• Hazard estimate is a proportion: Dj / Nj

• Variance of hazard estimate from theory about 
binomial proportions

• Delta method to get variance of log (1 - Dj / Nj )
• Then use properties of expectation to get variance of 

log S(t) = Σ log (1 - Dj / Nj )
– Noninformative censoring leads to asymptotically 

uncorrelated hazard estimates

• Use delta method to get variance of S(t)
• Standard error is square root of variance of S(t) 62

Approximate Distribution

• Suppose interested in p = Pr (T0 > c) in 
presence of right censoring
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Point Estimate

• Suppose interested in p = Pr (T0 > c) in 
presence of right censoring
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CI Using Greenwood’s Formula

• Suppose interested in p = Pr (T0 > c) in 
presence of right censoring
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Other Methods for CI

• CI constructed with Greenwood’s formula 
sometimes go beyond 0 or 1
– (This can happen with asymptotic CI with 

uncensored data, as well)
• If we construct CI based on log (- log S(t)) 

this won’t happen
– Some statistical programs will give you these 

CI instead

66

Hypothesis Tests

• Testing null hypothesis H0: p = p0 in 
presence of right censoring
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Example: PSA Data

• Men with prostate cancer
– Hormonal treatment
– Followed for signs of progression

• Interested in estimating probability of 
remaining in remission for three years
– Testing hypothesis that three year survival 

probability is 50% 
• (Where did this hypothesis come from?)

68

Example: Stata Commands

• Preparing data
– infile … obstime str8 inrem using psa.txt
– g relapse = 0
– replace relapse = 1 if inrem==“no”

• “Setting” survival variable
– stset obstime relapse

• Kaplan-Meier estimates
– sts graph, xtitle(“Time from Treatment (mos)”)
– sts list
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Stata: KM Graph

• sts graph, cens(s) xtitle(“Time (mos)”) 
t1(“Probability of Remaining in Remission”)

0.
00

0.
25

0.
50

0.
75

1.
00

0 20 40 60 80
Time (mos)

Probability of Remaining in Remission
Kaplan-Meier survival estimate
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Stata: KM Listing

• sts list
Beg.          Net      Survivor      Std.                      

Time    Total   Fail   Lost     Function     Error     [95% Conf. Int.] 
-------------------------------------------------------------------------

1       50      1      0       0.9800    0.0198     0.8664 0.9972 
3       49      3      0       0.9200    0.0384     0.8007 0.9692 
6       46      3      0       0.8600    0.0491     0.7286 0.9307 
7       43      1      0       0.8400    0.0518     0.7054 0.9166 
8       42      1      0       0.8200    0.0543     0.6826 0.9020 
9       41      1      0       0.8000    0.0566     0.6602 0.8870 

10       40      1      0       0.7800    0.0586     0.6381 0.8716 
12       39      2      0       0.7400    0.0620     0.5947 0.8399 
14       37      1      0       0.7200    0.0635     0.5735 0.8236 
15       36      1      0       0.7000    0.0648     0.5525 0.8070 
16       35      2      0       0.6600    0.0670     0.5114 0.7730 
17       33      1      0       0.6400    0.0679     0.4911 0.7557 

--more--

71

Stata: KM Listing

• sts list, at(24 27 30 33 36)

Beg.        Survivor   Std.
Time  Total  Fail  Function  Error  [95% Conf Int]
--------------------------------------------------

24     28    22   0.5600  0.0702  0.4124  0.6842
27     27 2   0.5185  0.0709  0.3725  0.6461
30     25     1   0.4978  0.0710  0.3529  0.6267
33     22     2   0.4545  0.0711  0.3124  0.5860
36     20     1   0.4318  0.0711  0.2913  0.5645

----------------------------------------------------
72

Stata: Two-sided P value
disp 2 * norm(- abs( ( 0.4318 – 0.5000) / 
0.0711))

.33745177
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Interpretation

– The Kaplan-Meier estimate of remaining in 
remission for 3 years after hormonal 
treatment of prostate cancer is 0.432.

– With 95% confidence, such an observation is 
not consistent with a true probability less than 
0.291 or greater than .565.

– Based on the P value of 0.337, we cannot 
reject the hypothesis that 50% of hormonally 
treated men would remain in remission for 3 
years.

74

Inference for
Rates

75

Incidence Rates
• In some studies, we make inference about 

rates of some event over space and / or 
time
– E.g., Estimation of cancer incidence rates

• Number of new cases of cancer diagnosed per 
person – year of observation

– E.g., Number of colon polyps that grow in a 
person during a 3 year period

– E.g., Number of respiratory tract infections in 
cystic fibrosis patients 76

Incidence Rates
• A mean, normalized to a standard period 

of time and a standard area of space 
(population)
– Most often, inference is based on a probability 

model involving the Poisson distribution
• Assumptions that lead to Poisson

– In a small interval of space and time, only one event can 
occur

– The number of events occurring in nonoverlapping
intervals are independent

• Alternatively, Poisson approximation to binomial
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Incidence Rates: Data
• Typically, the data for incidence rate data 

consist of
– Length of time-space interval a subject is 

under observation
• E.g., “Person – years” of observation

– Number of events observed in that subject
– Quite often, aggregate data is all that is 

presented
• Total person – years of observation
• Total number of events across subjects 78

Point Estimate

• Use the “sample mean”
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Approximate Distribution
• From central limit theorem
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Continuity Correction

• As with the binomial distribution, the 
number of events is discrete
– We do not usually bother with the continuity 

correction, but it would make sense
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Asymptotic CI: Best Approach

• We do best by considering mean-variance 
relationship and continuity correction
– Requires quadratic formula or iterative search
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Asymptotic CI: Elevator Stats

• Often we can just use best estimate of λ in 
standard error for confidence intervals and 
ignore the continuity correction
– number of events and t must be large
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Asymptotic P values: Best

• We do best by considering mean-variance 
relationship and continuity correction
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Asymptotic P values: Elevator

• We still consider mean-variance 
relationship but ignore continuity correction
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Stata Commands
– “ir countvar timevar”

• ir = “incidence rates”
• timevar = person – years (or area)

86

Exact Inference

• In the one sample problem, exact 
inference is possible
– It is not as common to use exact inference for 

Poisson rates, however
• Usually considering Poisson approximation to the 

binomial
• Most often we are in a two (or more) sample 

setting

87

Incidence Rates: Comments
• The assumption that incidence rate data 

might follow the Poisson distribution is a 
very strong one
– Usually the rate is changing over time, which 

causes the data to be more variable than the 
Poisson analysis might allow fo

– But many times, the real reason we are using 
a Poisson analysis is just as an approximation 
to the binomial distribution in the presence of 
a very low probability of event 88

Inference for
Geometric Means
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Scientific Indications
• Inference for the geometric mean is 

sometimes based on scientific issues
– For some measurements, proportionate 

change is more important than additive 
differences

• E.g., doubling of creatinine is more indicative of 
loss of kidney function than is the difference in 
creatinine measurements

• E.g., the clinical relevance of a change in PSA 
from 4 to 40 is more similar to a change from 400 
to 4000 than from 400 to 436 90

Statistical Indications
• But, the use of the geometric mean rather 

than the mean is most often based on 
statistical issues
– Relative to the mean, the geometric mean

• Tends to downweight outlying observations
• Tends to stabilize variance across groups when 

the original data has SD proportional to the means
• Tends to be better behaved when comparisons 

across groups are to be based on ratios

91

Inferential Methods
• Analyze means of log transformed data

– For clarity, usually better to back transform 
estimates to the original scale

• E.g., geometric mean of PSA, rather than mean of 
log PSA

• E.g., ratio of geometric means, rather than 
difference of means of log transformed data

– Exceptions do exist when the scientific 
community is used to log transformed data

• pH, Richter scale, decibels, titers
92

Interpretation
• Note that if the log transformed data is 

symmetrically distributed, then the 
geometric mean is the same as the 
median

• Hence, IF you are willing to presume symmetry 
after log transformation, then you can interpret 
your parameter as the median

• In this situation, the geometric mean will usually be 
a more efficient estimator of the median than 
would be the sample median
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Stata Commands

• “means”
– Provides estimates, CI for geometric means

• Also arithmetic and harmonic means

• Transforming positive data
– “gen newvar= log(var)”

• If  zeroes indicate “below limit of detection”
– Replace 0 by one-half lowest nonzero value?

– Use “ci” and / or “ttest”
– Backtransform estimates and CI with

•“disp exp(#)” 94

Example: Geometric Mean of FEV

• Scientific / statistical rationale for 
considering geometric mean of FEV
– A multiplicative relationship

• FEV is a volume (cubic dimension)
• Best predictor is height (linear dimension)

– Greater statistical precision obtained on log 
scale

95

Stata Commands: Estimate, CI
. bysort smoker: means fev
-> smoker = 0
Var |    Type        Obs Mean  [95% Conf. Interval]
fev | Arithmetic     589    2.566143   2.497314   2.634971 

|  Geometric     589    2.431225   2.366838   2.497364 
|   Harmonic     589    2.299331   2.236031   2.36632 

-> smoker = 1
Var |    Type        Obs Mean  [95% Conf. Interval]
fev | Arithmetic      65    3.276862   3.091024   3.462699 

|  Geometric      65    3.191452   3.011514   3.382142 
|   Harmonic      65     3.10473   2.927637   3.304627 

96

Stata Commands: Test
.gen logfev = log(fev)
.disp log(3)
1.0986123
. bysort smoker: ttest logfev=1.0986123
-> smoker = 0
Variab | Obs Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
logfev | 589  .888    .0136661    .3316671     .861555    .9152357
mean = mean(logfev)                                  t = -15.3824
Ho: mean = 1.09861                  degrees of freedom =      588
Ha: mean < 1.09861  Ha: mean != 1.09861      Ha: mean > 1.09861
Pr(T < t) = 0.0000  Pr(|T| > |t|) = 0.0000   Pr(T > t) = 1.0000

-> smoker = 1
Variab | Obs Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
logfev |  65  1.160    .0290495    .2342048    1.102443    1.218509
mean = mean(logfev)                                    t =   2.1296
Ho: mean = 1.09861                   degrees of freedom =       64
Ha: mean < 1.09861   Ha: mean != 1.09861        Ha: mean > 1.09861
Pr(T < t) = 0.9815   Pr(|T| > |t|) = 0.0371     Pr(T > t) = 0.0185


