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* Overview

* Properties of Probabilities

Distributions of Random Variables

— Binomial, Poisson, Exponential, Normal

* Inference Based on Summary Measures
« Sampling Distributions

Use of Probability

» Recall that in statistical analysis we use
probability in two ways
— Probability models describe nondeterministic
nature of measurements
* Summary measures define “tend to”

— Probability is used to quantify the uncertainty
in the results (conclusions) of our statistical
analysis

Distributions of Statistics

» Probability theory relevant to quantifying
uncertainty in our conclusions
— Distributional theory for estimators and
statistics across replicated experiments
* Properties of expectation, variance, covariance

» Asymptotic (large sample) results: Normal
distribution

— Criteria for “best” estimators and statistics
* Bias (expectation), variance




Special Distributions

+ Common probability distributions used in
probability models
— Binomial, Poisson, Exponential, (Normal), etc.

* Probability distributions that are important
for the sampling distribution of statistics
— Normal
— (Other sampling distns: t, F, chi squared)

Properties of Probabilities

Axioms of Probability

* Probabilities are between 0 and 1
«0<Pr(A)<1

» Probability of the sample space is 1
* Pr(Q) =1 (something has to happen)

* Probabilities of disjoint events add

« If events A and B cannot happen simultaneously,
then Pr(Aor B) =Pr (A) + Pr(B)

Properties of Probability

* Probability of the complement
* Pr(A°)=1-Pr(A)
» Probability of two simultaneous events
* Pr(Aand B) < Pr(A)
» Probability of at least one event
« Pr(A) <Pr(AorB)<Pr(A) +Pr(B)
* Pr(AorB)=Pr(A) +Pr(B)—Pr (A and B)
» Probability of a partition
* Pr(A) =Pr(AandB) + Pr (A and B°)




Conditional Probability

» Probability of event A given B occurred
« Pr(A|B)=Pr(AandB)/Pr(B)

» Conditional probabilities are probabilities
«0<Pr(A|B) <1
«Pr(B|B) =1
» If Pr (A, and A, and B) = 0 (mut excl given B), then

Pr(AjorA,|B)=Pr(A;|B) +Pr(A,| B)

«Pr(A°|B)=1-Pr(A|B)

Bayes’ Rule

» Derived properties
* Pr(Aand B) = Pr (A| B) x Pr (B)
* Pr(Aand B) = Pr (B| A) x Pr (A)
« Pr(B) =Pr(B|A) x Pr(A) + Pr (B| A°) x Pr (A°)

» Bayes’ Rule

Pr(4| B)= Pr(4 andB): Pr(B| A)Pr(A)

Pe(B)  Pr(B|4)Pr(4)+Pr(B| 4 )Pr(4)
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Independent Events
 Definition: Events A, B are independent if
* Pr(Aand B) =Pr(A) x Pr(B)

* Properties
« Pr(A|B)=Pr(A)
« Pr(B|A) =Pr(B)

* NOTE: “Independence” and “mutually
exclusive” are in some sense opposites
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Distributions of Random
Variables
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Random Variables

* The idea of making some measurement
— Measurement value can vary
— Probability distribution describes the relative
likelihood of observing particular values

* Once we know the probability distribution, we know
everything

Distribution Functions

» Specification depends on type of variable

— Categorical variables

« List the probability for each possible value
— A formula available for binomial, poisson

« If ordered, can give cumulative probabilities (cdf)
— Continuous variables

* Density or cumulative distribution function
— Formulas available for density and/of cdf
» Sometimes one is easier than the other
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Bernoulli Distribution

* A binary (0-1) random variable
- E.g., sex, vital status
— Probability distribution involves only the
parameter p: 0 <p <1
*Pr(X=1)=p
*Pr(X=0)=1-p
— Mean E(X)= p; variance Var(X)=p(1-p)
A binary random variable must have a
Bernoulli distribution

Binomial Distribution

* Counts the number of events in n
independent trials of the same experiment
— The sum of n independent Bernoulli variables

— Probability distribution has parameters n,p
*Fork=0,1,2,...,n

Pr(X:k):#_”pk(l—p)”

—Mean E(X) = np; variance Var(X)=np(1-p)
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Poisson Distribution

» Counts the events occurring at a constant
rate A in a specified time (and space) t
* Independent intervals of time and space
— E.g., Heart attacks in Seattle in 2005

— Probability distribution has parameter A > 0
*Fork=0,1,234, ..
—At k
Pr(X =k)= M
k!
— Mean E(X) = At, variance Var(X)= At

» Poisson approx to Binomial for low p

Exponential Distribution

» Continuous positive random variable
having constant hazard

— Sometimes used in time-to-event
* “Memorylessness” precludes wide application

— Probability distribution has hazard A > 0
Pr(X <t)=1-e*

—Mean E(X) = 1/A; variance Var(X)= 1/A2
+ Poisson interarrival times are Exponential
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Normal (Gaussian) Distribution

* The “bell-shaped curve’

* Arises from sums of multiple effects
— (due to the central limit theorem (CLT))

 Density and cdf from
()= J—Gep{ (2 uf } Fe)=[" f(u)du

—Mean E(X)= u, variance Var(X)= o°

Normal Density

Density for Normal {(mean 0, sd 1)
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Linearity of Normal Distribution

9000000000000 000000000000000OCFO

« If X~N (mean p, var ¢2), then for any
constants a, b

— Transformation Y= aX + b is also normally
distributed with

* Mean E(Y)
 Variance Var(Y)

au+b
a2o?
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Standardizing Transformation
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» Important special linear transformation
«Z=(X-n)/ o ~N(0,1)
— (and Z is very common notation here)
* Allows computation of probabilities

— The density for the normal distribution cannot
be integrated in closed form, instead use
* numerical integration,

« tables in the back of any statistics text tabulate
probabilities for Pr ( Z < c) (or equivalent)
« statistical software
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MNormal: Means 0, 1, and 2, sd 1

o~

Varying Mean, Std Deviations
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Stata Commands
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- Y“normal”

* “norm (c)” gives Pr(Z<c)forZ~N (0, 1)

— Examples: Z normal with mean 0, std dev 1
* Pr(Z<1.07): “display norm (1.07)"
* Pr(Z>0.37): “display 1 - norm (0.37)”
* Pr(0.37 <Z<1.07):

- “disp norm (1.07) - norm (0.37)”
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Stata Commands

* For other normal distributions: Standardize

— Examples: X normal with mean 3, std dev 2
« Z=(X-3)/2 is standard normal
* Pr(X<1.07):

- “disp norm ( (1.07 - 3) / 2 )”
* Pr(X>0.37):
-“disp 1 - norm ( (0.37 - 3) / 2 )"

— Examples: X normal with mean -4, std dev 5
e Z=(X—- -4)/5 =(X+4)/5is standard normal
* Pr(X>1.07):
- “disp 1 - norm ( (1.07 + 4) / 5 )”
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Sums of Normal Variables

* Sums of independent normally distributed
variables are also normally distributed
— For independent random variables
« X~N (mean y, var 62), and
« Y~N (mean T, var 02)
—The sum X + Y is normally distributed with
*mean = pn+7,and
. variance = o2 + 02
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Inference Based on
Summary Measures
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Real World

* Most often, we do not know the probability
distribution for a random variable

— Scientific questions correspond to answering
questions about unknown distributions
* Prediction of individual measurements
 Typical measurements, spread, etc.

» Comparison of probability distributions across
groups
— Tendencies to be larger or smaller
— Tendencies toward greater spread
- Etc. 28




Parameters of Distributions

* Generally we must define what we mean
by “typical”, “spread”, etc.

— Usually we use some summary measure of
the population’s data in a manner analogous
to using descriptive statistics for a sample

* Mean, median, mode
* Proportion above some threshold
 Variance

— Summary measures of population
distributions are often called “parameters”

Defining “tends to”

* Tendencies toward “larger” and “smaller”
measurements based on comparing
parameters of the distribution
— E.g., Scientific question:

* Does the population of smokers tend to have
smaller life expectancies than nonsmokers?

— Corresponding statistical question:

* Is the median (or mean, etc.) life expectancy
smaller for smokers compared to nonsmokers?

Justification

» Do statistical questions about parameters
really answer the scientific question: Yes
and No
— Certainly if parameters differ across

populations, then the distributions differ
— But: Two populations may have different
distributions, but the same mean (median, ...)

* We need to be sure that a parameter used for
inference captures what we care about
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Expectation of Variables

» Expectation of a random variable is simply
its average value over the population
—“Average” = “Mean” = “Expected Value”

* For random variable X, this is written E (X)

— For the same reasons that we used sample
means to describe a sample, the population
mean is often used to

* Describe “typical” values in the population
» Compare distributions across populations

32




Other Population Parameters

— Median: Mdn (X) is just the value such that
half the population is above it and half below it
* More generally we can describe any quantile
(percentile) for the distribution of X in the
population
— Proportion of the population exceeding some
threshold
— Variance: Var (X) is just the variance of the
measurement across the entire population
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Scientific Uses of the Mean

* Allows prediction of totals for population

* E.g., average health care costs can be used to
predict total costs for larger populations

» Often sensitive to a wide variety of
differences in distributions

« Sensitive to outliers as well as shifts of the entire
distribution
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Statistical Uses of the Mean

» Estimates of the mean are easy to use

— From mathematical theory we know

* How to estimate the mean in an unbiased and/or
consistent manner

» How to quantify the precision of the estimates

— Easy to compute and combine across studies
» Often the most efficient parameter estimated

35

Scientific Uses of the Variance

+ Some scientific questions are related to
the variability of the data
— Quality control

36




Statistical Uses of the Variance

* Because we often try to make inference
about the population mean, we also tend
to be interested in the population variance
— The population variance can often be used to

calculate the precision of our inference about
the population mean

37

Sampling Distributions
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Sampling Distributions

» We often quantify our confidence in study
conclusions according to what would
happen in replications of the experiment

— The distribution of a statistic across such
replications is called the “sampling
distribution” of the statistic

— E.g., Having observed 20% of smokers dying
within a year, we might ask the probability of
observing other results if we repeated the
experiment many times 39

Statistical Importance

» Both “frequentist” and “Bayesian”
inference need sampling distributions

— Frequentist inference:
* How often does data like this (or more extreme)
happen under a particular hypothesis?
— Purely a question about the sampling distribution
— Bayesian inference:
» Given our data, what is the probability that a
particular hypothesis is true?

— Uses sampling distribution along with “prior distribution”
(prevalence) in Bayes'’ rule 40




Bias and Variability of Statistics

» Often the exact sampling distribution for
an estimator or test statistic is unknown or
too difficult to compute

— Theory about expectations allows us to
describe general tendencies of statistics
* Unbiasedness: If we repeated the study many
times, would the resulting statistics tend to be
centered on the true parameter?
« Variability: How variable would the estimates be

across replicated experiments?
41

Using Properties of Expectation

* We sometimes want to combine statistics
reported in the literature
— Perform ad hoc adjustment for covariates
— Perform ad hoc meta-analyses across studies

» The basic properties of expectation often
allow us to perform such informal analyses

42

Linearity of Expectation

* For any
—random variables X, Y, and
—constants a, b, ¢

E(aX +bY +c)=aE(X)+bE(Y)+c

* (There is no requirement of independence
or identical distribution)

43

Sample Mean is Unbiased

» Across replicated studies, the average
sample mean will tend to be the true mean
— Population in which the average value is y

— Many studies each with n measurements
* In each study calculate the sample mean

— Average of those sample means tend to u

44




Properties of Variances

» The properties of expectation also help us
describe the variability of statistics

— Recall that variance is the average squared
distance from the mean

» The fact that it is an average allows us to use the
properties of expectation

 The fact that it involves squaring the data means
that we have to be careful as we use those
properties
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Variance: Linear Transformations

* For any
—random variable X, and
—constants a, ¢

Var (aX +c)=a’Var (X)

— (Recall that the variance involves subtracting

off the mean and then squaring) 45

Variance of Sums of Variables

» Variance of sums (and differences) of
random variables
— For any random variables X, Y with

» Corr (X, Y)=p (the Greek letter rho)

Var (X +Y)=Var (X)+Var (Y)+2p+/Var (X) Var (Y)

Var (X =Y) =Var (X )+ Var (Y)=2pVar (X) Var (Y)
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Sums of Independent Variables

» Variance of sums (and differences) of
independent random variables

— For any independent random variables X, Y
*(soCorr(X,Y)=0)

Var (X +Y)=Var (X )+ Var (Y)
Var (X = Y)=Var (X)+Var (Y)
— (recall that multiplying Y by -1 would multiply
the variance by the square of -1)
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Variability of Sample Means

» Computed across replicate experiments

— Suppose we sample n independent
measurements from a population in which
« the average value in the population is y, and
« the variance in the population is 62

— Across a large number of replicated studies
* the average sample mean will be y, and

- the variance of the sample means will be 62/ n
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Correlated Observations

* If the measurements are not independent
of one another, then the preceding formula
does not hold
— Positively correlated measurements lead to

greater variability of a group’s sample means

* Repeated measurements made on the same
individual, family, etc. tend to be positively
correlated

— Negatively correlated measurements lead to

less variable sample means for a group 5

Standard Errors of Statistics

* Recall that we usually find it easier to use
the square root of variances
— Variance is in squared units

» “Standard errors” are the square root of
the variance of a statistic
— The major motivation for the nomenclature is
to distinguish it from the standard deviation in
the population of measurements
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Properties of Standard Errors

* Must be derived from variances

— We compute standard errors by first finding
the sampling variance of the statistic

— When transforming or combining statistics
» Convert standard errors to variances by squaring

» Use properties of variances
— (These properties are derived from expectations)
» Convert resulting variance back to a standard error
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Using Standard Errors

* Knowing the bias and standard error of
statistics to estimate sampling distribution

— From properties of standard deviations

* At least 89% of a population must be within 3
standard deviations of its mean (Lec 4, slide 20)

» Thus, for any given statistic, we would expect the
statistic to be within 3 standard errors of its mean in
at least 89% of all studies

* (We would, however, prefer more precise

information about the sampling distribution)

Asymptotic Theory

* When the exact sampling distribution is
unknown or too difficult to compute

— Theoretical results allow statistical inference
in the setting of sufficiently large sample sizes

— Most of this asymptotic theory is based on
some form of a central limit theorem for the
distribution of a sum or arithmetic mean

 “Asymptotics” = as the sample size becomes

infinite 5

Central Limit Theorem

« Sample means are asymptotically
normally distributed
Data (X, X,,..X,) are
independent,
identically distributed,
with E(X,)=u and Var(Xl.)z o’ <w

2
For large n: X < N[mean M, var O-j
n

Ex: Binomial Distribution

* Recall that Binomial random variables can
be viewed as the sum of n independent,
identically distributed Bernoulli variables

Independent Bernoulli random variables
Pr(Y, =1)=
Y,...,Y, with (=1)=»p
Pr(Y,=0)=1-p

X=(Y] +...+Yn)~Bin0mial(n,p)
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Ex: Binomial Distribution

» Application of CLT: Normal approximation
to binomial

Central limit theorem : For large n,

X:1<y,+...+;;):yw(p, p(lp)j
n n n

Properties of normal :
X < N(np, np(1-p))
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Ex: How Large is Large?

* “Rules of Thumb” for the normal
approximation to the binomial:
— Based on ensuring not many “outliers”
*np>5and n(1-p)>5 OR
« np(1-p) > 5
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Limitations of CLT

» The definition of “large” sample size will be
dependent upon the original distribution

— Distributions with heavy tails require larger
sample sizes for a good approximation

— That having been said:

« It is often surprising how small “large” is
— A sample size of 30 — 40 will suffice for most data sets
commonly encountered in practice

— (see Lumley, et al., Annual Rev. Pub Health, 2002) .
5!

Other Central Limit Theorems

» CLTs exist in some other settings
— Independent, but not identically distributed
— Correlated observations
— Transformations of sample means

* We will generally leave it to those who write
computer programs to get the formulas right

— But we must be aware of the additional
conditions beyond finite variance 60




