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Lecture Outline

• Overview
• Properties of Probabilities
• Distributions of Random Variables

– Binomial, Poisson, Exponential, Normal
• Inference Based on Summary Measures
• Sampling Distributions
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Use of Probability
• Recall that in statistical analysis we use 

probability in two ways
– Probability models describe nondeterministic 

nature of measurements
• Summary measures define “tend to”

– Probability is used to quantify the uncertainty 
in the results (conclusions) of our statistical 
analysis
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Distributions of Statistics
• Probability theory relevant to quantifying 

uncertainty in our conclusions
– Distributional theory for estimators and 

statistics across replicated experiments
• Properties of expectation, variance, covariance 
• Asymptotic (large sample) results: Normal 

distribution
– Criteria for “best” estimators and statistics

• Bias (expectation), variance
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Special Distributions
• Common probability distributions used in 

probability models
– Binomial, Poisson, Exponential, (Normal), etc.

• Probability distributions that are important 
for the sampling distribution of statistics
– Normal
– (Other sampling distns: t, F, chi squared)
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Properties of Probabilities
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Axioms of Probability

• Probabilities are between 0 and 1
• 0 < Pr (A) < 1

• Probability of the sample space is 1
• Pr (Ω) = 1     (something has to happen)

• Probabilities of disjoint events add
• If events A and B cannot happen simultaneously, 

then Pr (A or B) = Pr (A) + Pr (B)
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Properties of Probability

• Probability of the complement 
• Pr (Ac) = 1 – Pr (A)

• Probability of two simultaneous events
• Pr (A and B) < Pr (A)

• Probability of at least one event
• Pr (A) < Pr (A or B) < Pr (A) + Pr (B)
• Pr (A or B) = Pr (A) + Pr (B) – Pr (A and B)

• Probability of a partition
• Pr (A) = Pr (A and B) + Pr (A and Bc) 
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Conditional Probability

• Probability of event A given B occurred
• Pr (A | B) = Pr (A and B) / Pr (B)

• Conditional probabilities are probabilities
• 0 < Pr (A | B) < 1
• Pr (B | B) = 1
• If Pr (A1 and A2 and B) = 0 (mut excl given B), then 

Pr (A1 or A2 | B) = Pr (A1 | B) + Pr (A2 | B)
• Pr (Ac | B) = 1 - Pr (A | B)
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Bayes’ Rule

• Derived properties
• Pr (A and B) = Pr (A | B) x Pr (B) 
• Pr (A and B) = Pr (B | A) x Pr (A)
• Pr (B) = Pr (B | A) x Pr (A) + Pr (B | Ac) x Pr (Ac)

• Bayes’ Rule
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Independent Events

• Definition: Events A, B are independent if
• Pr (A and B) = Pr (A) x Pr (B)

• Properties
• Pr (A | B) = Pr (A)
• Pr (B | A) = Pr (B)

• NOTE: “Independence” and “mutually 
exclusive” are in some sense opposites

12

Distributions of Random 
Variables
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Random Variables
• The idea of making some measurement

– Measurement value can vary
– Probability distribution describes the relative 

likelihood of observing particular values
• Once we know the probability distribution, we know 

everything
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Distribution Functions
• Specification depends on type of variable

– Categorical variables
• List the probability for each possible value

– A formula available for binomial, poisson

• If ordered, can give cumulative probabilities (cdf)
– Continuous variables

• Density or cumulative distribution function
– Formulas available for density and/of cdf

» Sometimes one is easier than the other
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Bernoulli Distribution
• A binary (0-1) random variable

– E.g., sex, vital status
– Probability distribution involves only the 

parameter p: 0 < p < 1
• Pr (X = 1) = p
• Pr (X = 0) = 1-p

– Mean E(X)= p; variance Var(X)= p(1-p)
• A binary random variable must have a 

Bernoulli distribution
16

Binomial Distribution
• Counts the number of events in n

independent trials of the same experiment
– The sum of n independent Bernoulli variables
– Probability distribution has parameters n,p

• For k= 0, 1, 2, …, n

– Mean E(X) = np; variance Var(X)=np(1-p)
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Poisson Distribution
• Counts the events occurring at a constant 

rate λ in a specified time (and space) t
• Independent intervals of time and space

– E.g., Heart attacks in Seattle in 2005
– Probability distribution has parameter λ > 0

• For k= 0, 1, 2, 3, 4, …

– Mean E(X) = λt; variance Var(X)= λt
• Poisson approx to Binomial for low p
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Exponential Distribution
• Continuous positive random variable 

having constant hazard
– Sometimes used in time-to-event

• “Memorylessness” precludes wide application
– Probability distribution has hazard λ > 0

– Mean E(X) = 1/λ; variance Var(X)= 1/λ2

• Poisson interarrival times are Exponential

( ) tetX λ−−=≤ 1Pr
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Normal (Gaussian) Distribution
• The “bell-shaped curve”
• Arises from sums of multiple effects

– (due to the central limit theorem (CLT))
• Density and cdf from 

– Mean E(X)= µ, variance Var(X)= σ2
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Normal Density
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Linearity of Normal Distribution
• If   X ~ N (mean µ, var σ2),  then for any 

constants a, b
– Transformation Y= aX + b is also normally 

distributed with
• Mean E(Y)    =       aµ + b

• Variance Var(Y) =         a2σ2
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Varying Mean, Std Deviations
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Standardizing Transformation
• Important special linear transformation

• Z = (X - µ )/ σ ~ N(0,1) 
– ( and Z is very common notation here)

• Allows computation of probabilities
– The density for the normal distribution cannot 

be integrated in closed form, instead use
• numerical integration,
• tables in the back of any statistics text tabulate 

probabilities for Pr ( Z < c) (or equivalent)
• statistical software
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Stata Commands
– “normal”

•“norm (c)” gives Pr (Z < c) for Z ~ N (0, 1) 

– Examples: Z normal with mean 0, std dev 1
• Pr (Z < 1.07): “display norm (1.07)”
• Pr (Z > 0.37): “display 1 - norm (0.37)”
• Pr (0.37 < Z < 1.07):

– “disp norm (1.07) – norm (0.37)”
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Stata Commands
• For other normal distributions: Standardize

– Examples: X normal with mean 3, std dev 2
• Z = (X – 3) / 2  is standard normal
• Pr (X < 1.07): 

– “disp norm (  (1.07 - 3) / 2  )”
• Pr (X > 0.37): 

– “disp 1 - norm ( (0.37 – 3) / 2 )”
– Examples: X normal with mean -4, std dev 5

• Z= (X – -4) / 5  = (X + 4) / 5 is standard normal
• Pr (X > 1.07): 

– “disp 1 - norm (  (1.07 + 4) / 5  )” 26

Sums of Normal Variables
• Sums of independent normally distributed 

variables are also normally distributed 
– For independent random variables

• X ~ N (mean µ, var σ2),  and

• Y ~ N (mean τ, var θ2)

– The sum X + Y is normally distributed with
• mean     =     µ + τ , and

• variance =    σ2 + θ2

27

Inference Based on 
Summary Measures

28

Real World
• Most often, we do not know the probability 

distribution for a random variable
– Scientific questions correspond to answering 

questions about unknown distributions
• Prediction of individual measurements
• Typical measurements, spread, etc.
• Comparison of probability distributions across 

groups
– Tendencies to be larger or smaller
– Tendencies toward greater spread
– Etc.
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Parameters of Distributions
• Generally we must define what we mean 

by “typical”, “spread”, etc.
– Usually we use some summary measure of 

the population’s data in a manner analogous 
to using descriptive statistics for a sample

• Mean, median, mode
• Proportion above some threshold
• Variance

– Summary measures of population 
distributions are often called “parameters” 30

Defining “tends to”
• Tendencies toward “larger” and “smaller” 

measurements based on comparing 
parameters of the distribution
– E.g., Scientific question: 

• Does the population of smokers tend to have 
smaller life expectancies than nonsmokers?

– Corresponding statistical question:
• Is the median (or mean, etc.) life expectancy 

smaller for smokers compared to nonsmokers?

31

Justification
• Do statistical questions about parameters 

really answer the scientific question: Yes 
and No
– Certainly if parameters differ across 

populations, then the distributions differ
– But: Two populations may have different 

distributions, but the same mean (median, …)
• We need to be sure that a parameter used for 

inference captures what we care about
32

Expectation of Variables
• Expectation of a random variable is simply 

its average value over the population
– “Average” = “Mean” = “Expected Value”

• For random variable X, this is written E (X)
– For the same reasons that we used sample 

means to describe a sample, the population 
mean is often used to

• Describe “typical” values in the population
• Compare distributions across populations
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Other Population Parameters
– Median: Mdn (X) is just the value such that 

half the population is above it and half below it
• More generally we can describe any quantile

(percentile) for the distribution of X in the 
population

– Proportion of the population exceeding some 
threshold

– Variance: Var (X) is just the variance of the 
measurement across the entire population
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Scientific Uses of the Mean
• Allows prediction of totals for population

• E.g., average health care costs can be used to 
predict total costs for larger populations 

• Often sensitive to a wide variety of 
differences in distributions

• Sensitive to outliers as well as shifts of the entire 
distribution
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Statistical Uses of the Mean
• Estimates of the mean are easy to use

– From mathematical theory we know
• How to estimate the mean in an unbiased and/or 

consistent manner
• How to quantify the precision of the estimates

– Easy to compute and combine across studies
• Often the most efficient parameter estimated
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Scientific Uses of the Variance
• Some scientific questions are related to 

the variability of the data
– Quality control
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Statistical Uses of the Variance
• Because we often try to make inference 

about the population mean, we also tend 
to be interested in the population variance
– The population variance can often be used to 

calculate the precision of our inference about 
the population mean
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Sampling Distributions

39

Sampling Distributions
• We often quantify our confidence in study 

conclusions according to what would 
happen in replications of the experiment
– The distribution of a statistic across such 

replications is called the “sampling 
distribution” of the statistic

– E.g., Having observed 20% of smokers dying 
within a year, we might ask the probability of 
observing other results if we repeated the 
experiment many times 40

Statistical Importance
• Both “frequentist” and “Bayesian” 

inference need sampling distributions
– Frequentist inference: 

• How often does data like this (or more extreme) 
happen under a particular hypothesis?

– Purely a question about the sampling distribution

– Bayesian inference: 
• Given our data, what is the probability that a 

particular hypothesis is true?
– Uses sampling distribution along with “prior distribution” 

(prevalence) in Bayes’ rule
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Bias and Variability of Statistics
• Often the exact sampling distribution for 

an estimator or test statistic is unknown or 
too difficult to compute
– Theory about expectations allows us to 

describe general tendencies of statistics
• Unbiasedness: If we repeated the study many 

times, would the resulting statistics tend to be 
centered on the true parameter?

• Variability: How variable would the estimates be 
across replicated experiments?
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Using Properties of Expectation
• We sometimes want to combine statistics 

reported in the literature
– Perform ad hoc adjustment for covariates
– Perform ad hoc meta-analyses across studies

• The basic properties of expectation often 
allow us to perform such informal analyses
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Linearity of Expectation
• For any 

– random variables X, Y, and
– constants a, b, c

• (There is no requirement of independence 
or identical distribution)
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Sample Mean is Unbiased
• Across replicated studies, the average 

sample mean will tend to be the true mean
– Population in which the average value is µ
– Many studies each with n measurements 

• In each study calculate the sample mean
– Average of those sample means tend to µ
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Properties of Variances
• The properties of expectation also help us 

describe the variability of statistics
– Recall that variance is the average squared 

distance from the mean
• The fact that it is an average allows us to use the 

properties of expectation
• The fact that it involves squaring the data means 

that we have to be careful as we use those 
properties
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Variance: Linear Transformations
• For any 

– random variable X, and
– constants a, c

– (Recall that the variance involves subtracting 
off the mean and then squaring)
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Variance of Sums of Variables
• Variance of sums (and differences) of 

random variables
– For any random variables X, Y with

• Corr (X, Y) = ρ (the Greek letter rho)
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Sums of Independent Variables
• Variance of sums (and differences) of 

independent random variables
– For any independent random variables X, Y

• ( so Corr (X, Y) = 0 )

– (recall that multiplying Y by -1 would multiply 
the variance by the square of -1)
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Variability of Sample Means
• Computed across replicate experiments

– Suppose we sample n independent
measurements from a population in which 

• the average value in the population is µ, and
• the variance in the population is σ2

– Across a large number of replicated studies
• the average sample mean will be µ, and
• the variance of the sample means will be σ2 / n
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Correlated Observations
• If the measurements are not independent 

of one another, then the preceding formula 
does not hold
– Positively correlated measurements lead to 

greater variability of a group’s sample means
• Repeated measurements made on the same 

individual, family, etc. tend to be positively 
correlated

– Negatively correlated measurements lead to  
less variable sample means for a group
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Standard Errors of Statistics
• Recall that we usually find it easier to use 

the square root of variances
– Variance is in squared units

• “Standard errors” are the square root of 
the variance of a statistic
– The major motivation for the nomenclature is 

to distinguish it from the standard deviation in 
the population of measurements 52

Properties of Standard Errors
• Must be derived from variances

– We compute standard errors by first finding 
the sampling variance of the statistic

– When transforming or combining statistics
• Convert standard errors to variances by squaring
• Use properties of variances

– (These properties are derived from expectations)

• Convert resulting variance back to a standard error
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Using Standard Errors 
• Knowing the bias and standard error of 

statistics to estimate sampling distribution
– From properties of standard deviations 

• At least 89% of a population must be within 3 
standard deviations of its mean (Lec 4, slide 20)

• Thus, for any given statistic, we would expect the 
statistic to be within 3 standard errors of its mean in 
at least 89% of all studies

• (We would, however, prefer more precise 
information about the sampling distribution) 54

Asymptotic Theory 
• When the exact sampling distribution is 

unknown or too difficult to compute
– Theoretical results allow statistical inference 

in the setting of sufficiently large sample sizes

– Most of this asymptotic theory is based on 
some form of a central limit theorem for the 
distribution of a sum or arithmetic mean

• “Asymptotics” = as the sample size becomes 
infinite

55

Central Limit Theorem
• Sample means are asymptotically 

normally distributed
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Ex: Binomial Distribution
• Recall that Binomial random variables can 

be viewed as the sum of n independent, 
identically distributed Bernoulli variables
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Ex: Binomial Distribution
• Application of CLT: Normal approximation 

to binomial
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Ex: How Large is Large?
• “Rules of Thumb” for the normal 

approximation to the binomial:
– Based on ensuring not many “outliers”

• np > 5  and n(1-p) > 5; OR
• np(1-p) > 5
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Limitations of CLT
• The definition of “large” sample size will be 

dependent upon the original distribution
– Distributions with heavy tails require larger 

sample sizes for a good approximation

– That having been said:
• It is often surprising how small “large” is

– A sample size of 30 – 40 will suffice for most data sets 
commonly encountered in practice

– (see Lumley, et al., Annual Rev. Pub Health, 2002)
60

Other Central Limit Theorems
• CLTs exist in some other settings

– Independent, but not identically distributed
– Correlated observations
– Transformations of sample means

• We will generally leave it to those who write 
computer programs to get the formulas right
– But we must be aware of the additional 

conditions beyond finite variance


