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Lecture Outline

• Review of univariate descriptive statistics
• Purpose of bivariate descriptive statistics
• Stratified univariate descriptives
• Graphical

– Stratified histograms, densities, boxplots
– Scatterplots, least squares lines, smooths

• Correlation
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Review of Univariate
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Purpose of Bivariate
Descriptive Statistics

6

Purpose of Bivariate Description

• Characterize the relationship between two 
variables
– Detecting errors in data collection or data 

entry
– Characterizing materials and methods
– Assessing validity of assumptions
– Basis for some estimates of association 

(inference)
– Hypothesis generation (exploration/inference)

7

Detecting Errors

• Sometimes data measurements are not 
unusual univariately, but are unusual in 
combination
– E.g., 6 foot tall 3 year olds
– E.g., pregnant males

• Patterns may exist in missing data
– Minorities may be more likely to be missing 

data on some medical procedures 8

Materials and Methods

• Describe patterns of sampling
– E.g., minorities may tend to be younger
– E.g., older subjects may tend to be women
– E.g., smokers may tend to drink alcohol more
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Validity of Assumptions

• Scientific 
– Confounding (ultimately involves 3 variables)
– Effect modification (involves 3 variables)

• Statistical
– E.g., assumptions about within group variance
– E.g., assumptions about linearity of trends
– E.g., influence of “outliers”
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Evidence of Associations

• Two variables are said to be associated if 
the distribution of one variable differs 
across groups defined by the other 
variable
– E.g., if interested in determining whether sex 

and blood pressure are associated, see if
• distribution of blood pressure differs between men 

and women, OR
• proportion of men varies across groups defined by 

blood pressure measurements

11

Quantify Associations

• Describe “dose-response”
– How the effect differs across groups having 

ever larger differences in the grouping 
variable

• E.g., linear response
• E.g., S-shaped curves
• E.g., U-shaped trends

12

Hypothesis Generation

• Examine sample to detect associations not 
previously considered
– Any such associations suggested by the data 

should be confirmed in an independent 
sample
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Stratified Univariate
Descriptive Statistics

14

Stratified Univariate Descriptives

• Strata defined by one variable
– Continuous variables must be divided into 

categories

– Methods of dividing into categories
• Scientific basis: Intervals with scientific meaning
• Statistical basis: Intervals with equal sample sizes

– Generally such intervals are not evenly spaced, thus 
detecting linear trends are difficult

15

Examining Stratified Descriptives

– Errors in data: 
• Unusual range by strata

– Materials and methods: 
• Describe central tendency, range by strata

– Validity of assumptions:
• E.g., missing data by strata
• E.g., equal variances across strata
• E.g., linear trends in central tendency

– Evidence of associations:
• E.g., difference in means, medians across strata 16

Choice of Stratified Descriptives

– By purpose of descriptives
• Ability to assess errors
• Ability to describe sample
• Ability to examine validity of assumptions
• Scientific relevance as estimates of association

– By type of data
• Unordered versus ordered
• Continuous versus discrete
• Uncensored versus censored
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FEV Ex: Categorizing Age

• Stata: Create variable containing age 
categories in two year intervals
– g agectg = age
– recode agectg 3/4=3 5/6=5 7/8=7 
9/10=9 11/12=11 13/14=13 15/16=15 
17/18=17 19/20=19

– Alternative approach using arithmetic
•g agectg = int ( (age-1) / 2) * 2 + 1

18

FEV Ex: Stata Commands

• Stata: Create table of stratified statistics
– by agectg: tabstat height, stat(n
mean sd min p25 p50 p75 max) 
col(stat) format

19

FEV Ex: Height by Age Groups
agectg |     N  mean   sd min  p25  p50  p75  max

3 |  11.0  48.8  1.8   46.0 48.0 48.0 50.0 52.0
5 |  65.0  52.5  2.4   46.5 51.0 52.5 54.0 58.0
7 | 139.0  57.1  3.3   47.0 54.5 57.0 59.5 67.5
9 | 175.0  61.5  3.3   52.5 59.0 61.0 64.0 70.0
11 | 147.0  64.7  3.3   57.0 62.0 64.5 67.0 72.0
13 |  68.0  66.7  3.5   61.0 63.8 67.0 69.0 74.0
15 |  32.0  66.8  3.4   60.0 64.0 66.8 69.3 73.5
17 |  14.0  67.7  3.6   60.0 66.0 68.5 70.0 73.0
19 |   3.0  67.8  3.6   65.5 65.5 66.0 72.0 72.0

Total | 654.0  61.1  5.7   46.0 57.0 61.5 65.5 74.0

20

FEV Ex: Findings

– Mean, median height within age strata 
increases by about 4 inches every two years 
up until about age 12 then levels off

– Standard deviation of height within age strata 
much less than standard deviation of entire 
sample

• An indication that age predicts height
– Standard deviation of height within age strata 

increases as the mean increases
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Mean-Variance Relationships

• We often see the variance differ 
systematically according to group means
– Differential diagnosis

• Precision of measurement as a percentage
• Variability in rates, but measurement of total

– E.g., different growth per year, height at age 10 

• Confounding
– E.g., more older kids smoke, which stunts growth?

• Effect modification
– E.g, young boys and girls tend to be same height, older 

boys taller than older girls 22

FEV Ex: Age Quantiles

• Stata: Find age quantiles
– centile age,c(12 25 37 50 62 75 87)
Variable | Obs Pctile Centile [95% Conf. Interval]

-------------+--------------------------------------------
age | 654     12       7.0        6.0         7.0

|         25       8.0        8.0 8.0
|         37       9.0        9.0 9.0
|         50      10.0        9.0        10.0
|         62      11.0       10.0        11.0
|         75      12.0       11.0        12.0
|         87      13.0       13.0 14.0

23

FEV Ex: Categories by Quantiles

• Stata: Create variable of age categories
– g agectg=age

– recode agectg min/7=1 8=2 9=3 10=4 
11=5 12=6 13=7 14/max=8

– tabstat fev, stat(n mean sd min p25 
p50 p75 max) col(stat) format 
by(agectg)

24

FEV Ex: Height by Age Octiles
agectg|     N  mean   sd min   p25   p50   p75   max

1 | 130.0  53.4  3.1  46.0  51.0  53.0  55.5  62.5
2 |  85.0  58.3  3.2  52.0  56.5  58.5  60.0  67.5
3 |  94.0  60.6  2.9  53.0  58.5  60.3  62.5  69.0
4 |  81.0  62.5  3.4  52.5  60.0  62.0  65.0  70.0
5 |  90.0  64.5  3.2  58.0  62.0  64.5  67.0  72.0
6 |  57.0  65.2  3.5  57.0  63.0  64.5  68.0  72.0
7 |  43.0  66.2  3.6  61.0  63.0  66.5  68.5  74.0
8 |  74.0  67.2  3.4  60.0  64.5  67.0  70.0  73.5

Total | 654.0  61.1  5.7  46.0  57.0  61.5  65.5  74.0
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FEV Ex: Findings with Quantiles

• We were less able to pick out the regions 
of linearity

• The lowest octile covered several years, the next 
few octiles were each 1 year in width

• We were not able to pick out the mean 
variance relationship

• The first octile was not as homogeneous with 
respect to age, and height varied with age within 
that stratum

26

Crosstabulation of Categories

• tabulate smoker female, cell 
column row

|        female
smoker |         0          1 |     Total

|       310        279 |       589 
|     52.63      47.37 |    100.00 
|     92.26      87.74 |     90.06 

0  |     47.40      42.66 |     90.06 
|        26         39 |        65 
|     40.00      60.00 |    100.00 
|      7.74      12.26 |      9.94 

1  |      3.98       5.96 |      9.94
Total |       336        318 |       654 

|     51.38      48.62 |    100.00 
|    100.00     100.00 |    100.00 
|     51.38      48.62 |    100.00 

27

Graphical Bivariate
Descriptive Statistics

28

Stratified Univariate Graphs

– Divide sample into strata based on one 
variable

– Display for each stratum
• histograms
• densities
• boxplots

– For greatest comparability, the same axes 
should be used in all plots 
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Ex: Stratified Histograms

• FEV data: Histograms of height by sex
– hist height, by(female) 
xtitle(“Height (in)”)
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Ex: Stratified Boxplots

• FEV data: Boxplots of height by sex
– graph box height, by(female) 
ytitle(“Height (in)”)
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Ex: Stratified Univariate Stats

• FEV data: Univariate description of height 
by sex
– tabstat height, by(female) stat(n
mean sd min p25 p50 p75 max) 
col(stat) format

female |     N  mean  sd min  p25  p50  p75  max
0 | 336.0  62.0 6.3  47.0 57.0 62.0 67.5 74.0
1 | 318.0  60.2 4.8  46.0 57.5 61.0 63.5 71.0

Total | 654.0  61.1 5.7  46.0 57.0 61.5 65.5 74.0

32

Scatterplots

• A graph of Y versus X
– Most useful for two continuous variables

• Look for
– Outliers
– Trends in location across groups

• First order trends (linear)
• Second order trends (curves, U-shape, S-shape)

– Trends in within group spread of data
• (Looking at range)
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Stata: Scatterplot

• Stata commands
– “scatter yvar xvar, [options]”

• Example: Height vs Age in FEV Data
scatter height age, xtitle(“Age (y)”) 
t1(“FEV Data: Height vs Age (unjittered)”) 
ytitle(“Height (in)”)

34
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Ex: Interpretation

– No outliers
– Tends to increased height for older ages

• First order trend is upward
– Hint of curvilinear relationship

• Height levels off at highest ages
– Suggestion of increasing spread with 

increased height
• Must be careful when judging variability from range
• Need to compare range of equal numbers of data 

in area with equal slopes 36

Jittered Scatterplots

• If variables are discretely measured, 
jittering can be helpful
– “jittering”: adding a little noise to the data to 

break ties
– I tend to try to jitter to allow visualization of all 

points, but still try to keep discrete levels 
separate use a spread of about 40% the 
separation between categories



Applied Biostatistics I, AUT 2006 October 18, 2006

Part 1:10

37

Stata: Jittering

• Stata commands
– “scatter yvar xvar, jitter(n)”

• Example: Height vs Age in FEV Data
scatter height age, xtitle(“Age (y)”) 
t1(“FEV Data: Height vs Age (jittered)”) 
ytitle(“Height (in)”) jitter(3)

38

40
.0

50
.0

60
.0

70
.0

80
.0

H
ei

gh
t (

in
)

0.0 5.0 10.0 15.0 20.0
Age (y)

FEV Data: Height vs Age (jittered)

39

Variance Within Groups

• On a scatterplot, our eye sees range of 
data within groups

• We usually want to judge variance
– Especially how variance might differ with X

• Converting range to variance
– Consider spread in two regions far apart

• Need sample sizes approximately equal
• Need slopes approximately equal 

40

Superimposed Curves

• It is often helpful to place curves over a 
scatterplot to help see trends in the data
– Theoretical relationship

• If theory prescribes a supposed relationship
– Least squares line of within group means

• “Best fitting” line to means, but has to be a line
– Smooths of measure of location within groups

• Curve representing approximation to the data
– E.g., lowess
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Least Squares Line

• Find the straight line that minimizes total 
squared vertical distance from data to line
– Conceptually: Trial and error search

• Guess a formula for a line
• Compute total squared distance from data to line
• Iterate until smallest number found

– Calculus: 
• Find a formula based on derivatives

– Real life:
• Computers find such estimates easily 42

Try: Y = -1 + 1 * X

X

Y

0 2 4 6 8

0
2

4
6

8

Total Sqr Dist = 56.42

LS: Y = 0.62 + 0.547 * X

X

Y

0 2 4 6 8

0
2

4
6

8

Total Sqr Dist = 14.51

Try: Y = 2 + 0.25 * X

X

Y

0 2 4 6 8

0
2

4
6

8

Total Sqr Dist = 29.07

Conceptual Example
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Stata: Superimposed Lines

• Basic Stata bivariate graph command
– “twoway …”

– Special cases
•“twoway scatter …”   (scatterplot of points)
•“twoway line …”      (connect with lines)
•“twoway lfit …”      (least squares fit)
•“twoway lowess …”    (lowess curve)

• Superimposed graphs
– twoway (graphtyp …) (graphtyp …) …

44

Ex: Height vs Age with LS Fit

• Stata commands
twoway (scatter height age, jitter(3))
(lfit height age), xtitle(“Age (y)”)
ytitle(“Height (in)”)
t1(“Least Squares Fit of Height on Age”)
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Ex: Height vs Age with LS Fit
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Interpretation

• Clearly increasing trend in data
• Our eye tends to like to detect lines, so it 

takes careful inspection to decide a line is 
not the best fit
– Note that at lowest ages and highest ages 

most data tend to be on one side of line rather 
than symmetric about line

– Possible curvilinear association

47

Lowess Smooths

• Locally Weighted Scatterplot Smoother
– A smoother to find a smooth curve 

approximating relationship in the data
– For every value of X, fits straight lines in a 

neighborhood of that value
• “Bandwidth” is width of window defining 

neighborhood
• Weights closer data more heavily

– Combines the estimates from different regions 
to form a smooth curve 48

Lowess: Conceptual Algorithm

• Least squares lines fit in neighborhoods
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Lowess Smooth

• Combines locally fit least squares lines
Lowess Smooth
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Ex: Height vs Age with Lowess

• Stata commands
twoway (scatter height age, jitter(3))
(lowess height age), 
xtitle(“Age (y)”) ytitle(“Height (in)”)
t1(“Lowess of Height on Age”)

51

Ex: Height vs Age with Lowess
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Changing the Bandwidth

• Default bandwidth is 0.8 (80% of data)
– I typically use the default of whatever program 

I am using
• Stata commands for less smoothing
twoway (scatter height age, jitter(3))
(lowess height age, bwidth(.1)), 
xtitle(“Age (y)”) ytitle(“Height (in)”)
t1(“Lowess of Height on Age: Bandwidth 0.1”)
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Changing the Bandwidth
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Ex: Showing Both LS, Lowess

• Stata commands
twoway (scatter height age, jitter(3))
(lowess height age, col(“red”)
(lfit height age, col(“blue”),
xtitle(“Age (y)”) ytitle(“Height (in)”)
t1(“Lowess, LS of Height on Age”)

55

Ex: Showing Both LS, Lowess
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Interpretation

– Lowess smooth shows that height tends to 
increase pretty linearly with age up until about 
age 11 or 12

– Height levels off in late teens with little change 
in mean height
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Other Smoothers

• Many different methods of smoothing data 
have been proposed
– Lowess is often criticized due to the way it can 

accentuate data near the end of its range
• One should not make too much of the way the 

estimate curve wiggles at the extremes of the data
– For my purposes, almost any smoother will do

• I just want to have something that is not forced to 
be a line, and something that I did not draw

– I can be just as biased as anyone
58

Correlation

59

Correlation Coefficient

• A measure of the tendency of the largest 
measurements for one variable to be 
associated with the largest measurements 
of the other variable
– Dimensionless
– The sample correlation r estimates the 

population correlation ρ (rho)

60

Pearson’s Correlation Coefficient 

•Definition of correlation between X and Y:
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Possible Values of r

• Range of r : -1 ≤ r ≤ 1
– r = 1 : perfect positive correlation

• a graph of X vs Y will be a straight line with 
positive slope

– r = -1 : perfect negative correlation
• a graph of X vs Y will be a straight line with 

negative slope
– r = 0 : no correlation

62

Straight Line Relationships

• Pearson’s correlation coefficient with linear data
r = 1.0

 (Perfect line, pos slope)

X

Y

-2 -1 0 1 2

-2
-1

0
1

2

r = 0.0
 (Perfect line, zero slope)

X

Y

-2 -1 0 1 2

-0
.0

05
0.

0
0.

00
5

r = -1.0
 (Perfect line, neg slope)

X

Y

-2 -1 0 1 2

-2
-1

0
1

2

63

Linear Trends in Data

• Pearson’s correlation coefficient with variable 
data

r = 0.75
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Correlation and Independence

• Independent variables will have ρ = 0
• (and r tending to be close to 0)

• However, uncorrelated variables are not 
necessarily independent
– Correlation measures linear trend in the mean 

of one variable in groups defined by the other
– It is possible that a nonlinear association 

exists between two variables, and that the first 
order trend is a zero slope
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Uncorrelated Variables

• No linear trend between the variables
r = 0.0 (Independence)
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Stata Commands
–“correlate varlist”

• Correlation of all pairs of variables
• Missing data deleted on a casewise basis

–“pwcorr varlist”
• Correlation of all pairs of variables
• Missing data deleted on a pairwise basis

67

Ex: Correlation in FEV Data
. corr subjid age fev height sex smoke
(obs=654)

| subjid age     fev height     sex   smoke
-------+-----------------------------------------------
subjid | 1.0000

age |-0.0112  1.0000
fev |-0.0147  0.7565  1.0000

height |-0.0317  0.7919  0.8681  1.0000
sex | 0.0407 -0.0291 -0.2084 -0.1590  1.0000

smoke |-0.0601 -0.4043 -0.2454 -0.2804 -0.0756  1.0000
– Some of these correlations don’t make much 

sense
• subjid is a nominal variable
• sex, smoke are binary variables

68

Effect of Outliers on r

• Pearson’s correlation coefficient can be 
greatly affected by outliers
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Spearman’s Rank Correlation

• To decrease the influence of outliers, 
Spearman’s rank correlation coefficient 
computes the correlation of the ranks of 
the data

– In the previous example, the rank correlation 
is always the same: approximately 0.07

70

Stata: Spearman’s Correlation
– “spearman var1 var2”

• Correlation of one pair of variables
• Cases with missing data for either variable are 

deleted, and then ranks are computed

71

Ex: Correlation in PSA Data

corr nadir pretx
(obs=43)                                                 

|    nadir    pretx
--------+------------------

nadir|   1.0000                                       

pretx|   0.5371   1.0000

spearman nadir pretx
Number of obs =      43                                  

Spearman's rho =   0.1489
72

Ex: Nadir vs Pretreatment PSA

• Scatterplot of nadir versus pretx
– scatter nadir pretx
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Ex: Nadir vs Pretx Ranks

– egen rnknadir = rank(nadir)
– egen rnkpretx = rank(pretx)
– scatter rnknadir rnkpretx
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Ex: Spearman’s Corr vs r

• Possible explanation for lower rank 
correlation with Spearman’s
– Perhaps outliers in distribution of nadir and/or 

pretx unduly inflate r
– Perhaps transforming to ranks masks true 

linear association in skewed variables
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Uses of Correlation

• By type of variable
– Correlation is a mean, thus only makes sense 

when a mean does
• Limited interpretability with categorical data
• Of no scientific relevance with censored data

• By scientific question
– Greatest relevance when looking for 

associations between variables
• But not particularly generalizable across studies
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Correlation and Regression
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More Interpretable Formula for r

Xofvaluesame have                      
 thatgroupsin  Y of variance)|(
 samplein  X of  variance)(      

X and Ybetween  slope (LS)                      

)|()(
)(                   2

==
=
=

=+
≈

xXYVar
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xXYVarXVar
XVarr

β

β
β
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Properties of Correlation

• Correlation tends to increase in absolute 
value as
– The absolute value of the slope of the line 

increases
– The variance of data decreases within groups 

that share a common value of X
– The variance of X increases
– (Sample size is unimportant in tendencies 

toward lower or higher correlation)
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Ex: Height vs Age (by Sex)
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Ex: Height vs Age (by Sex)

• Correlation between Height and Age
– Males: r = -0.206; Females: r = -0.193
– Combined: r = -0.110

• Less extreme r in combined sexes
– Approximately same slope in each sex and 

overall
– Approximately same variance of age in each 

sex and overall
– Combined group has higher within group 

variance of height by age (due to sex effect)
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Ex: Weight vs Height (by Sex)
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Ex: Weight vs Height (by Sex)

• Correlation between Height and Weight
– Males: r = .387; Females: r = 0.352
– Combined: r = 0.548

• More extreme r in combined sexes
– Approximately same slope in each sex and 

overall
– Approximately same within group variance (by 

height) for each sex and overall
– Combined group has higher variance of height
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Scientific Relevance of r

• Correlation as a scientific measure
– It should be noted that

• the slope between X and Y is of scientific interest
• the variance of Y|X=x is partly of scientific interest, 

but it can be affected by restricting sampling to 
certain values of another variable

– E.g., var (Height | Age) is less in males than when both 
sexes are included

• the variance of X is often set by study design
– This is often not of scientific interest


