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Lecture Outline

* Review of univariate descriptive statistics
» Purpose of bivariate descriptive statistics
Stratified univariate descriptives

Graphical
— Stratified histograms, densities, boxplots
— Scatterplots, least squares lines, smooths

Review of Univariate
Descriptive Statistics
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2
Unordered Ordered
Binary Nominal Categ Quant Cens
Distribution
Frequency OK OK OK OK
Cum Freq boring OK OK KM
Mode boring Sample Sample Density
Quantiles boring OK OK KM
Dichotomize
OK OK OK OK KM
Prop / Odds
Means
Arithmetic Prop hd OK (?KM)
Geometric OK
Std Dev boring OK
Others OK




Purpose of Bivariate
Descriptive Statistics

Purpose of Bivariate Description
» Characterize the relationship between two
variables

— Detecting errors in data collection or data
entry

— Characterizing materials and methods
— Assessing validity of assumptions

— Basis for some estimates of association
(inference)

— Hypothesis generation (exploration/inference)
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Detecting Errors

+ Sometimes data measurements are not
unusual univariately, but are unusual in
combination
—E.g., 6 foot tall 3 year olds
— E.g., pregnant males

» Patterns may exist in missing data

— Minorities may be more likely to be missing
data on some medical procedures

Materials and Methods

» Describe patterns of sampling
— E.g., minorities may tend to be younger
— E.g., older subjects may tend to be women
— E.g., smokers may tend to drink alcohol more




Validity of Assumptions

» Scientific
— Confounding (ultimately involves 3 variables)
— Effect modification (involves 3 variables)

« Statistical
— E.g., assumptions about within group variance
— E.g., assumptions about linearity of trends
— E.g., influence of “outliers”

Evidence of Associations

» Two variables are said to be associated if
the distribution of one variable differs
across groups defined by the other
variable

- E.g., if interested in determining whether sex

and blood pressure are associated, see if
« distribution of blood pressure differs between men
and women, OR
* proportion of men varies across groups defined by

blood pressure measurements 10

Quantify Associations

» Describe “dose-response”

— How the effect differs across groups having
ever larger differences in the grouping
variable

* E.g,, linear response
* E.g., S-shaped curves
* E.g., U-shaped trends

Hypothesis Generation
+ Examine sample to detect associations not
previously considered

— Any such associations suggested by the data
should be confirmed in an independent
sample
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Stratified Univariate
Descriptive Statistics

Stratified Univariate Descriptives

« Strata defined by one variable

— Continuous variables must be divided into
categories

— Methods of dividing into categories
« Scientific basis: Intervals with scientific meaning

« Statistical basis: Intervals with equal sample sizes

— Generally such intervals are not evenly spaced, thus
detecting linear trends are difficult
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Examining Stratified Descriptives
— Errors in data:
* Unusual range by strata
— Materials and methods:
» Describe central tendency, range by strata
— Validity of assumptions:
* E.g., missing data by strata
» E.g., equal variances across strata
» E.g., linear trends in central tendency
— Evidence of associations:
 E.g., difference in means, medians across strata 15

Choice of Stratified Descriptives

— By purpose of descriptives

* Ability to assess errors

* Ability to describe sample

+ Ability to examine validity of assumptions

« Scientific relevance as estimates of association
— By type of data

» Unordered versus ordered

+ Continuous versus discrete

» Uncensored versus censored
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FEV Ex: Categorizing Age
» Stata: Create variable containing age
categories in two year intervals
—g agectg = age
- recode agectg 3/4=3 5/6=5 7/8=7
9/10=9 11/12=11 13/14=13 15/16=15
17/18=17 19/20=19

— Alternative approach using arithmetic

*g agectg = int ( (age-1) / 2) * 2 + 1
17

FEV Ex; Stata Commands
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» Stata: Create table of stratified statistics
-by agectg: tabstat height, stat(n
mean sd min p25 p50 p75 max)
col (stat) format
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FEV Ex: Height by Age Groups

9000000000000 000000000000000CFO

agectg | N mean sd min p25 p50 p75 max
3 | 11.0 48.8 1.8 46.0 48.0 48.0 50.0 52.0
5| 65.0 52.5 2.4 46.5 51.0 52.5 54.0 58.0
7 1 139.0 57.1 3.3 47.0 54.5 57.0 59.5 67.5
9 | 175.0 61.5 3.3 52.5 59.0 61.0 64.0 70.0
11 | 147.0 64.7 3.3 57.0 62.0 64.5 67.0 72.0
13 | 68.0 66.7 3.5 61.0 63.8 67.0 69.0 74.0
15 | 32.0 66.8 3.4 60.0 64.0 66.8 69.3 73.5
17 | 14.0 67.7 3.6 60.0 66.0 68.5 70.0 73.0
19 | 3.0 67.8 3.6 65.5 65.5 66.0 72.0 72.0
Total | 654.0 61.1 5.7 46.0 57.0 61.5 65.5 74.0
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FEV Ex: Findings

— Mean, median height within age strata
increases by about 4 inches every two years
up until about age 12 then levels off

— Standard deviation of height within age strata
much less than standard deviation of entire
sample

* An indication that age predicts height

— Standard deviation of height within age strata

increases as the mean increases
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Mean-Variance Relationships
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* We often see the variance differ
systematically according to group means

— Differential diagnosis
* Precision of measurement as a percentage
« Variability in rates, but measurement of total
— E.g., different growth per year, height at age 10
» Confounding
— E.g., more older kids smoke, which stunts growth?
« Effect modification

— E.g, young boys and girls tend to be same height, older
boys taller than older girls 21

FEV Ex: Age Quantiles
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« Stata: Find age quantiles

—-centile age,c (12 25 37 50 62 75 87)

Variable | Obs Pctile Centile [95% Conf. Interval]
_____________ o
age | 654 12 7.0 6.0 7.0

| 25 8.0 8.0 8.0

| 37 9.0 9.0 9.0

| 50 10.0 9.0 10.0

| 62 11.0 10.0 11.0

| 75 12.0 11.0 12.0

| 87 13.0 13.0 14.0

FEV Ex: Categories by Quantiles
 Stata: Create variable of age categories
— g agectg=age
—-recode agectg min/7=1 8=2 9=3 10=4
11=5 12=6 13=7 14/max=8
- tabstat fev, stat(n mean sd min p25
P50 p75 max) col(stat) format
by (agectgq)
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FEV Ex: Height by Age Octiles
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agectqg| N mean sd min p25 p50 P75 max
1] 130.0 53.4 3.1 46.0 51.0 53.0 55.5 62.5
2| 85.0 58.3 3.2 52.0 56.5 58.5 60.0 67.5
3 1 94.0 60.6 2.9 53.0 58.5 60.3 62.5 69.0
4 | 81.0 62.5 3.4 52.5 60.0 62.0 65.0 70.0
5] 90.0 64.5 3.2 58.0 62.0 64.5 67.0 72.0
6 | 57.0 65.2 3.5 57.0 63.0 64.5 68.0 72.0
7 ] 43.0 66.2 3.6 61.0 63.0 66.5 68.5 74.0
8 | 74.0 67.2 3.4 60.0 64.5 67.0 70.0 173.5
Total | 654.0 61.1 5.7 46.0 57.0 61.5 65.5 74.0
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FEV Ex: Findings with Quantiles
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* We were less able to pick out the regions
of linearity

* The lowest octile covered several years, the next
few octiles were each 1 year in width

* We were not able to pick out the mean
variance relationship

» The first octile was not as homogeneous with
respect to age, and height varied with age within
that stratum
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Crosstabulation of Categories

e tabulate smoker female, cell
column row

| female

smoker | 0 1 ] Total
| 310 279 | 589

| 52.63 47.37 | 100.00

| 92.26 87.74 | 90.06

0 | 47.40 42.66 | 90.06

| 26 39 | 65

| 40.00 60.00 | 100.00

| 74 12.26 | 9.94

1 3.98 5.96 | 9.94
Total | 336 318 | 654
| 51.38 48.62 | 100.00

| 100.00 100.00 | 100.00

| 51.38 48.62 | 100.00
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Graphical Bivariate
Descriptive Statistics

27

Stratified Univariate Graphs
— Divide sample into strata based on one
variable
— Display for each stratum
* histograms
* densities
* boxplots
— For greatest comparability, the same axes
should be used in all plots
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Ex: Stratified Histograms
* FEV data: Histograms of height by sex
—hist height, by (female)
xtitle (“Height (in)”)
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Height (in) 29
Graphsby female

Ex: Stratified Boxplots
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* FEV data: Boxplots of height by sex
—graph box height, by (female)
ytitle (“Height (in)”)

0 1

B =

8

Height (in)
0
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Ex: Stratified Univariate Stats
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» FEV data: Univariate description of height
by sex
—tabstat height, by (female) stat (n
mean sd min p25 p50 p75 max)
col (stat) format

female | N mean sd min p25 p50 p75 max
0 | 336.0 62.0 6.3 47.0 57.0 62.0 67.5 74.0
1 | 318.0 60.2 4.8 46.0 57.5 61.0 63.5 71.0
Total | 654.0 61.1 5.7 46.0 57.0 61.5 65.5 74.0
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Scatterplots
* A graph of Y versus X

— Most useful for two continuous variables

* Look for
— Outliers
— Trends in location across groups
* First order trends (linear)
» Second order trends (curves, U-shape, S-shape)
— Trends in within group spread of data

* (Looking at range) .




Stata: Scatterplot
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» Stata commands
- “scatter yvar xvar, [options]”

« Example: Height vs Age in FEV Data

scatter height age, xtitle(“Age (y)”)
t1 (“FEV Data: Height vs Age (unjittered)”)
ytitle (“Height (in)”)
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FEV Data: Height vs Age (unjittered)
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Ex: Interpretation

9000000000000 000000000000000CFO

— No outliers

— Tends to increased height for older ages
« First order trend is upward
— Hint of curvilinear relationship
» Height levels off at highest ages
— Suggestion of increasing spread with
increased height
* Must be careful when judging variability from range
* Need to compare range of equal numbers of data

in area with equal slopes 35

Jittered Scatterplots
« If variables are discretely measured,
jittering can be helpful
— “Yjittering”: adding a little noise to the data to
break ties

— | tend to try to jitter to allow visualization of all
points, but still try to keep discrete levels
separate use a spread of about 40% the
separation between categories

36




Stata: Jittering

9000000000000 000000000000000CFO

» Stata commands
- “scatter yvar xvar, jitter (n)”

« Example: Height vs Age in FEV Data

scatter height age, xtitle(“Age (y)”)
t1 (“FEV Data: Height vs Age (jittered)”)
ytitle (“Height (in)”) jitter(3)
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FEV Data: Height vs Age (jittered)
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Variance Within Groups
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» On a scatterplot, our eye sees range of
data within groups
» We usually want to judge variance
— Especially how variance might differ with X
» Converting range to variance

— Consider spread in two regions far apart
* Need sample sizes approximately equal
* Need slopes approximately equal
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Superimposed Curves

9000000000000 000000000000000CFO

* It is often helpful to place curves over a
scatterplot to help see trends in the data
— Theoretical relationship
« If theory prescribes a supposed relationship
— Least squares line of within group means
* “Best fitting” line to means, but has to be a line
— Smooths of measure of location within groups

« Curve representing approximation to the data
- E.g., lowess

40




Least Squares Line
* Find the straight line that minimizes total
squared vertical distance from data to line
— Conceptually: Trial and error search
* Guess a formula for a line
» Compute total squared distance from data to line
* lterate until smallest number found
— Calculus:
* Find a formula based on derivatives
— Real life:
* Computers find such estimates easily 41

Conceptual Example

9000000000000 000000000000000CFO
Try:Y=-1+1*X LS:Y=0.62+0.547 * X Try:Y=2+0.25*X

Total Sqr Dist = 56.42 Total Sgr Dist = 14.51 Total Sqgr Dist = 29.07

542

Stata: Superimposed Lines

9000000000000 000000000000000CFO

» Basic Stata bivariate graph command

r”

- “twoway ..

— Special cases
* “twoway scatter ..

”

scatterplot of points)
connect with lines)
least squares fit)
lowess curve)

”

e “twoway line ..

”

e “twoway 1lfit ..

”

~ o~ o~ o~

* “twoway lowess ..
» Superimposed graphs
- twoway (graphtyp ..) (graphtyp ..)
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Ex: Height vs Age with LS Fit

9000000000000 000000000000000CFO

» Stata commands

twoway (scatter height age, jitter(3))
(Lfit height age), xtitle(“Age (y)”)
ytitle (“Height (in)”)

tl (“Least Squares Fit of Height on Age”)
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Ex: Height vs Age with LS Fit
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Interpretation

9000000000000 000000000000000CFO

» Clearly increasing trend in data

» Our eye tends to like to detect lines, so it
takes careful inspection to decide a line is
not the best fit

— Note that at lowest ages and highest ages
most data tend to be on one side of line rather
than symmetric about line

— Possible curvilinear association

46

Lowess Smooths

9000000000000 000000000000000CFO

 Locally Weighted Scatterplot Smoother

— A smoother to find a smooth curve
approximating relationship in the data

— For every value of X, fits straight lines in a
neighborhood of that value

» “Bandwidth” is width of window defining
neighborhood

* Weights closer data more heavily

— Combines the estimates from different regions

to form a smooth curve .

Lowess: Conceptual Algorithm
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» Least squares lines fit in neighborhoods

Neighborhood of 2 Neghborhoodof4  Nelgbomoodof6  Neighbomoodof8

Wy
s
s
.
L
PP
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Lowess Smooth

9000000000000 000000000000000CFO

+ Combines locally fit least squares lines

Lowess Smooth

Ex: Height vs Age with Lowess

9000000000000 000000000000000CFO

+ Stata commands

twoway (scatter height age, jitter(3))
(lowess height age),

xtitle (“Age (y)”) ytitle(“Height (in)”)
tl (“Lowess of Height on Age”)

50

Ex: Height vs Age with Lowess
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Changing the Bandwidth

9000000000000 000000000000000CFO

+ Default bandwidth is 0.8 (80% of data)

— | typically use the default of whatever program
| am using

» Stata commands for less smoothing
twoway (scatter height age, jitter(3))
(lowess height age, bwidth(.1)),

xtitle (“Age (y)”) ytitle(“Height (in)”)

tl (“Lowess of Height on Age: Bandwidth 0.17)

52




Changing the Bandwidth

Lowess of Height on Age: Bandwidth 0.1
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Ex: Showing Both LS, Lowess

9000000000000 000000000000000CFO

+ Stata commands

twoway (scatter height age, jitter(3))
(lowess height age, col (“red”)

(Lfit height age, col (“blue”),

xtitle (“Age (y)”) ytitle(“Height (in)”)
tl (“Lowess, LS of Height on Age”)
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Ex: Showing Both LS, Lowess

Lowess, LS of Height on Age
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Interpretation
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— Lowess smooth shows that height tends to
increase pretty linearly with age up until about
age 11 or 12

— Height levels off in late teens with little change
in mean height

56




Other Smoothers

* Many different methods of smoothing data
have been proposed
— Lowess is often criticized due to the way it can
accentuate data near the end of its range
* One should not make too much of the way the
estimate curve wiggles at the extremes of the data
— For my purposes, almost any smoother will do

* | just want to have something that is not forced to
be a line, and something that | did not draw

— | can be just as biased as anyone
57

Correlation

58

Correlation Coefficient

» A measure of the tendency of the largest
measurements for one variable to be
associated with the largest measurements
of the other variable
— Dimensionless

— The sample correlation r estimates the
population correlation p (rho)

59

Pearson’s Correlation Coefficient

*Definition of correlation between X and Y:

COV(X,Y) Z(XI_X)(I_?)
r= — i=1
War(X) Var(Y) \/Z (x,- XY \/ 1 (-7}
ZH:X,.Y,. -nXY

i=1

S X2 -n¥? [y af?
r i
i=1

i=1
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Possible Values of r
* Range of r:-1<r<1
—r =1 : perfect positive correlation

+ a graph of X vs Y will be a straight line with
positive slope

—r = -1 perfect negative correlation

« a graph of X vs Y will be a straight line with
negative slope

—r =0 : no correlation

61

Straight Line Relationships

» Pearson’s correlation coefficient with linear data

r=10 r=00 r=-10
(Perfect line, pos slope) (Perfect line, zero slope) (Perfect line, neg slope)

22222 62

Linear Trends in Data
« Pearson’s correlation coefficient with variable
data

63

Correlation and Independence

* Independent variables will have p =0
* (and r tending to be close to 0)
* However, uncorrelated variables are not
necessarily independent

— Correlation measures linear trend in the mean
of one variable in groups defined by the other

— It is possible that a nonlinear association
exists between two variables, and that the first
order trend is a zero slope

64




Uncorrelated Variables

9000000000000 000000000000000CFO

* No linear trend between the variables

£ =0.0 (Independence) = 0.0 (Association, but no linear trend)
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Stata Commands

9000000000000 000000000000000CFO

—-“correlate varlist”

» Correlation of all pairs of variables

* Missing data deleted on a casewise basis
-“pwcorr varlist”

» Correlation of all pairs of variables

» Missing data deleted on a pairwise basis

66

Ex: Correlation in FEV Data

9000000000000 000000000000000CFO

. corr subjid age fev height sex smoke

(obs=654)
| subjid age fev height sex smoke

_______ o
subjid | 1.0000

age |-0.0112 1.0000

fev |-0.0147 0.7565 1.0000
height |-0.0317 0.7919 0.8681 1.0000

sex | 0.0407 -0.0291 -0.2084 -0.1590 1.0000

smoke |-0.0601 -0.4043 -0.2454 -0.2804 -0.0756 1.0000
— Some of these correlations don’t make much
sense
* subjid is a nominal variable
* sex, smoke are binary variables
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Effect of Outliersonr
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» Pearson’s correlation coefficient can be
greatly affected by outliers
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Spearman’s Rank Correlation

» To decrease the influence of outliers,
Spearman’s rank correlation coefficient
computes the correlation of the ranks of
the data

— In the previous example, the rank correlation
is always the same: approximately 0.07

69

Stata: Spearman’s Correlation
— “spearman varl var2’
* Correlation of one pair of variables

+ Cases with missing data for either variable are
deleted, and then ranks are computed

70

Ex: Correlation in PSA Data

corr nadir pretx
(obs=43)
| nadir pretx
________ o
nadir| 1.0000

pretx| 0.5371 1.0000

sSpearman nadir pretx
Number of obs = 43

Spearman's rho = 0.1489
71

Ex: Nadir vs Pretreatment PSA

» Scatterplot of nadir versus pretx
— scatter nadir pretx
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Ex: Nadir vs Pretx Ranks

— egen rnknadir = rank(nadir)
—egen rnkpretx = rank(pretx)
— scatter rnknadir rnkpretx
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rank of (nadir)

20
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T T
30 40

Ex: Spearman’s Corrvs r
* Possible explanation for lower rank
correlation with Spearman’s

— Perhaps outliers in distribution of nadir and/or
pretx unduly inflate r

— Perhaps transforming to ranks masks true
linear association in skewed variables
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Uses of Correlation

» By type of variable
— Correlation is a mean, thus only makes sense
when a mean does
« Limited interpretability with categorical data
» Of no scientific relevance with censored data

» By scientific question
— Greatest relevance when looking for

associations between variables

» But not particularly generalizable across studies
75

Correlation and Regression
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More Interpretable Formula for r

re Var(X)
b L Var(X)+Var(Y | X = x)

f = (LS) slope between Y and X
Var (X)) = variance of X in sample
Var(Y | X = x) = variance of Y in groups that
have same value of X
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Properties of Correlation
» Correlation tends to increase in absolute
value as
— The absolute value of the slope of the line
increases
— The variance of data decreases within groups
that share a common value of X
— The variance of X increases

— (Sample size is unimportant in tendencies

toward lower or higher correlation)
78

Ex: Height vs Age (by Sex)

Both sexes r=-0.11 Females: r =-0.193 Males: r = -0.206
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Ex: Height vs Age (by Sex)

» Correlation between Height and Age
— Males: r =-0.206; Females: r =-0.193
— Combined: r=-0.110

* Less extreme r in combined sexes

— Approximately same slope in each sex and
overall

— Approximately same variance of age in each
sex and overall

— Combined group has higher within group

variance of height by age (due to sex effect) ”




Ex: Weight vs Height (by Sex)

Both sexes: r = 0.548 Females: r = 0.352 Males: r = 0.387
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Ex: Weight vs Height (by Sex)
» Correlation between Height and Weight
— Males: r = .387; Females: r = 0.352
— Combined: r =0.548
* More extreme r in combined sexes

— Approximately same slope in each sex and
overall

— Approximately same within group variance (by
height) for each sex and overall

— Combined group has higher variance of height

Scientific Relevance of r

» Correlation as a scientific measure

— It should be noted that
* the slope between X and Y is of scientific interest
« the variance of Y|X=x is partly of scientific interest,
but it can be affected by restricting sampling to
certain values of another variable

— E.g., var (Height | Age) is less in males than when both
sexes are included

« the variance of X is often set by study design
— This is often not of scientific interest
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