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Graphical Characterizations
of an Entire Distribution

Probability Distribution Function

* For ordered variables, we define
— Cumulative distribution function (cdf):
« F(x)=Pr(X<x)
— Survivor function:
* S(X)=Pr(X>x)=1-F(x)




Empirical Distribution Function

« Sample cumulative distribution function or
survivor function can be used as an
estimate

— (Just treat the sample as if it were the
population)

» These functions can sometimes be
estimated for censored data (unlike
histograms, densities, etc.)

Empirical CDF: No Censoring

» Definition:

For uncensored data {X X X n}

Empirical cumulative distributi on function

. 1
F(x)==> iy =

nin
Empirical survivor function

S(x)=1-F(x)

#observatio ns < x

n

Empirical CDF: Properties
» The empirical cdf assigns probability mass
of 1/n at each observation
— Step function:
* jumps at each observation
* level between observations
» The empirical cdf can be graphed for an
ordered variable

* Because we draw conclusions from the spacing of
the x-axis, this makes most sense when the
measurements are on an interval or ratio scale 7

Stata: Empirical CDF

e “cumul var, gen(Fvar) equal”
— Generates a new variable named Fvar with
empirical CDF

— (Note the need to use the “equal” option to
handle ties)

e “line Fvar var, sort
connect (stairstep)”
— Produces empirical CDF (as a step function)
— (Note the need to use the “sort” option)




Stata Ex: Age CDF (FEV data)

e cumul age, gen (Fage) equal

* line Fage age,
connect (stairstp) sort
xtitle (“"Age (years)”)
ytitle (“Empirical CDF”)
tl (“Empirical CDF for Age in
FEV Data”)

Stata Ex: Age CDF (FEV data)
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Empirical CDF for Age in FEV Data

Empirical CDF
.6 .8
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Age (years)

Setting for Right
Censored Data

Missing Data
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* |deal: “Just say no.”

* Real life: “Missing data happens”
— Ignorable

» We can safely throw out the cases with missing
data without biasing our results

— Nonignorable

» Omitting cases with missing data leads to
erroneous conclusions
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Sad Facts of Life

» “Bloodsuckers hide beneath my bed”

— Eyepennies”, Mark Linkous (Sparklehorse)

» Typically, nothing in your data can tell you
whether missing data is ignorable or
nonignorable

—You just have to deal with what you worry
about

Censored Data
» Special type of nonignorable missing data

— The value is known to be in some interval, but
the exact value is not always known

— Commonly arises when measuring time to
some event

— Can also arise when measuring laboratory
values due to nondetectable levels or
saturation of the device
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Types of Censored Data

* Right censoring:

— For some observations it is only known that
the true value exceeds some threshold

* Left censoring:

— For some observations it is only known that
the true value is below some threshold

* Interval censoring:

— For some observations it is only known that

the true value is between some thresholds v

Example: Setting
* A clinical trial of aspirin in prevention of
cardiovascular mortality
— 10,000 subjects are randomized equally to
receive either aspirin or placebo
— Subjects are randomized over a three year
period

— Subijects are followed for fatal events for an
additional three year period following accrual
of the last subject
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Example: Right Censoring

* Problem:
— At the end of the clinical trial, some subjects
have been observed to die
* True time to death is known for these subjects
— At the end of the clinical trial, most subjects
are likely to be still alive

» Death times of these subjects are only known to be
longer than the observation time

* “(Right) Censored observations”

Example: Wrong Approach

» Cannot ignore censored data
— These are our treatment successes

— If we throw these cases out of the dataset, we
will underestimate the probability of longer
survival
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Example: Bad Solution #1
» Cannot just treat as binary (live/die) data
— Potential time of follow-up (censoring time)
differs across subjects
» Administrative censoring (alive at time of analysis)
* Loss to follow-up due to adverse events
— Confounding vs loss of precision

Example: Bad Solution #2

» Should not just treat as binary (live/die)
data at time of earliest censoring

— May not answer the scientific question
* Detecting short term versus long term effects
— Statistically less efficient

20




Right Censored Data
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* Notation:
Unobserved :
True times to event : {Y]O,TZO,...,Z:)}

Censoring Times : {Cl ,Cysents Cn}

Observed data :
Observation Times: T, = min(T,.O,Cl. )
1 if7=T"
Event indicators : D, = 4 K
0 otherwise

Motivating Example
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Motivating Example
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» Hypothetical study of subject survival

— Subjects accrued to study and followed until
time of analysis

« Study done at three centers, which started the
studies in three successive years

» Censoring time thus differs across centers
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Data by Date (Real Time)

9000000000000 000000000000000CFO

Staggered study entry by site
Accrual Group

Year A B C
1990 On study 100 - -
Died 43
Surviving 57
1991 On study 57 100 --
Died 27 53
Surviving 30 47
1992 On study 30 47 100
Died 13 22 55

Surviving 17 25 45
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Data by Study Time
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Realign data according to time on study
Accrual Group

Year A B C
1 On study 100 100 100
Died 43 53 55
Surviving 57 47 45
2 On study 57 47 --
Died 27 22
Surviving 30 25
3 On study 30 -= -=
Died 13
Surviving 17 25

Combined Data
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Accrual Group

Year A B C Combined
1 On study 100 100 100 300
Died 43 53 55 151
Surviving 57 47 45 149

2 On study 57 47 -= 104
Died 27 22 49
Surviving 30 25 55

3 On study 30 -= -- 30
Died 13 13
Surviving 17 17
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Problem Posed by Missing Data
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« Sampling scheme causes (informative)
missing data

— Potentially, we might want to estimate three
year survival probabilities

— Different centers contribute information for
varying amounts of time
» One year survival can be estimated at A, B, C
» Two year survival can be estimated at A, B
» Three year survival can be estimated at A 27

Possible Remedies
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—WRONG: Ignore missing
* E.g., 17 of 300 subjects alive at three years

— RIGHT BUT WRONG QUESTION: Use data
only up to earliest censoring time
» E.g., 149 of 300 subjects alive at one year

— RIGHT BUT INEFFICIENT: Use only center A
* E.g., 17 of 100 subjects alive at three years

28




Best Approach

— RIGHT AND EFFICIENT

» Use all available data to estimate that portion of
survival for which it is informative
— Use Centers A, B, and C to estimate one year survival

— Use Centers A and B to estimate proportion of one-year
survivors who survive to two years

— Use Center A to estimate proportion of two-year
survivors who survive to three years
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Theoretical Basis for Approach
* Properties of probabilities

— Probability of event A and B occurring is
product of
* Probability that A occurs when B has occurred
* Probability that B has occurred
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Application of Theory to Survival

* Fortimes T, < T, , probability of surviving
beyond time T, is the product of

— Probability of surviving beyond time T, given
survival beyond time T, and

— Probability of surviving beyond time T,

Fort, <t <t,<--- <y,
Pr(T° >, )=Pr(T’ >4, T" >4,
—Pe(T0 2 |0 20, )Pe(T0 21, )

Jj-1

Estimate Conditional Survival
+ Condition on surviving up until the start of
the time interval
— Denominator is number of subjects at start of
interval
— Numerator is deaths during the interval

* Requirement for validity

— Subijects available at the start of each time
interval are a random sample of the
population surviving to that time

“ H . . » 32
+ “Noninformative censoring




Estimate Survival Probability
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» Estimate probability of survival at the
endpoint of each time interval

— Multiply the conditional probabilities for all
intervals prior to the time point of interest
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Application to Example

» Within interval conditional probabilities
« Use A, B, C to estimate Pr (T°>1)
*« Use A,B toestimate Pr(7°>2|T°>1)
* Use A to estimate Pr(T9>3| T°>2)

» Multiply to obtain unconditional cumulative

survival
s Pr(1°>1)
* Pr(T°>2)= Pr(T°22|T°>1) Pr(T°>1)
« Pr(10>3) = Pr(T0>3|T°>2) Pr(T°>2) .

Motivating Example Results
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Survival Probabilities
Yr Combined Each Year Cumulative

1 On study 300
Died 151
Surviving 149 149/300 = 49.67% 49.67%

2 On study 104
Died 49
Surviving 55 55/104 = 52.88% .4967*.5288 = 26.27%

3 On study 30
Died 13
Surviving 17 17/ 30 = 56.67% .2627*%.5667 = 14.88%
35

Estimation of
Survivor Functions

36




Noninformative Censoring
* When estimating survivor functions using
censored data:

— Censoring must not be informative
» Censored subjects neither more nor less likely to
have an event in the immediate future
— Censored individuals must be a random
sample of those at risk at time of censoring
— (Later: a random sample from all subjects at
risk having similar modeled covariates)
37

Informative Censoring Examples

— Subijects in a clinical trial are withdrawn due to
treatment failure (likely they would die sooner
than those remaining)

— Subjects in a clinical trial in a fatal condition
are lost to follow up when they go on vacation
(likely they are healthier than those
remaining)
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Informative Censoring Examples

— Leukemia patients in a clinical trial of bone
marrow transplantation are censored if they
die of infections rather than dying of cancer
(the subjects who died of infections might
have had a more effective regimen to wipe
out existing cancer)
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Detecting Informative Censoring

» As a general rule it is impossible to use
the data to detect informative censoring

— The necessary data is almost certainly
missing in the data set

—In some cases, it is impossible to ever
observe the missing data
* Nonfelines can only die once

* We cannot observe whether subjects dying of one
cause are more or less likely to die of another if we

cure them of the first cause 0




Life Table Methods

* In the actuarial (e.g., insurance) setting

— The time intervals are often chosen by years,
decades, etc.

— The data are presented for each year as
* N; Number of subjects at risk at start of interval

* C;: Number censored during interval (these will
contribute half a person)

. Dj: Number of events in interval

41

Life Table Methods: Notation

* Number at risk, censored, failed in each

interval
Time interval : (t‘ it ]
Number at risk : N,
Number censored : C ;
Number of events : D.

J
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Life Table Methods: Formula

» Computation of probability of survival

Conditional probability of survival in interval :
D,

Pr(T0 >t |T° > tj—1)= P A

N i~ 0.5xC ;

Cumulative probability of survival :
Pr(70>1,)=Pe(r° >4, 1T 21, )Pe(7° > 1,.,)
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Kaplan-Meier Estimates

» Kaplan-Meier (Product Limit) Estimates

— With more precisely measured individual data

» The time intervals are defined by unique
observation times
» The data are presented for each year as
— N;: Number of subjects at risk at start of interval
— D;: Number of events at end of interval
— (Note no censoring or events during interval by definition)
— (Note also that for ties, censoring occurs after deaths)

44




Kaplan-Meier Notation

» Definition of intervals, number at risk,
failures

Ordered distinct observation times :
t,<t, <<t

Time interval : (t =Ny
Number at risk at ¢ I N ;
Number of events at ¢ I D ;
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Kaplan-Meier Hazard Estimates
+ Computation of hazard and conditional
probability of survival in interval

Hazard for event in interval : —L
j
Conditional probability of survival in interval :
D,
0 0 .
Pr(T’ >4, T 21, )= I_V;

46

Kaplan-Meier Survival Estimate

 Estimating survival probability
S(t) = Pr (T° > )

Cumulative probability of survival :
Pr(70>¢,)=Pr(T°>¢,|T° > 1, )P (10> ¢,

s()[ 3]{131 J( -2)
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If Last Observation Censored

— Note that in the above definition, for an
interval which ends in a censored observation
with no observed events, the conditional
probability of surviving within the interval is 1.

— Note also that if the largest observation time
is censored, the KM (PLE) survivor function
never goes to zero

» We generally regard the KM (PLE) survivor
function to be undefined for times beyond the

largest observation time in this situation 48




Kaplan-Meier Properties
* The KM (PLE) survivor functions can be
shown to be
— Consistent: As sample sizes go to infinity,
they estimate the true value
— Nonparametric maximum likelihood estimates

 But usual asymptotic (large sample) theory for
regular, parametric MLE’s does not apply

« Asymptotic (large sample) normal distribution for
estimates was established differently

49

Other Derivations of KM

* The KM (PLE) survivor functions can also
be derived as the

« Self-consistent estimator (see Miller, Survival
Analysis)
* “Redistribute to the right” estimator

50

Redistribute to the Right

» Basic idea

— Recall the empirical cdf assigns probability
1/n to each observation

— A censored observation should be equally
likely to have event time like any of the
remaining uncensored observations

* Recursively redistribute the mass of each
censored observation among the subjects

remaining at risk 51

Ex: Redistribute to the Right
—Data: 1, 3,4*,5,7%,9, 10
* (asterisk means censored)

— Initially: each point has mass 1/7

— Determine probability of events at earliest
observed (uncensored) event times
« Pr(T0=1)=1/7
« Pr(T0=3)=1/7

52




Ex: Redistribute to the Right
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— Censored observation at 4

« Divide the mass at 4 equally among the remaining
subjects at risk
— Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10

— Determine probability of events at next
observed (uncensored) event times
« Pr(T°=5)=5/28

53

Ex: Redistribute to the Right
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— Censored observation at 7

+ Divide the mass at 7 equally among the remaining
subjects at risk
— Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10

— Determine probability of events at next
observed (uncensored) event times
« Pr(T0=9) = 15/56
« Pr(T0 = 10) = 15/56

54

Ex: Redistribute to the Right
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Kaplan-Meier estimate of Survival

t Pr (T° = t) Pr (T° > t)
0 1.000
1 1/ 7 = 0.143 .857
3 1/ 7 = 0.143 .714
4 0.000 .714
5 5/28 = 0.179 .536
7 0.000 .536
9 15/56 = 0.268 .268
10 15/56 = 0.268 .000

55

Stata: Kaplan-Meier Commands
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* First step is declaring data to be of
censored survival type

— Potentially three variables may be used
« Start of interval
— Assumed to be at time 0 if nothing supplied
* End of interval

« Status at end of interval
— 0 = censored
— Nonzero = event occurred at end of interval

56




Stata: Kaplan-Meier Commands

» Syntax for “setting survival data”

- “stset endtime eventind,
t0(entrytime)”
* endtime: name of the variable measuring the time
at the end of the interval

* eventind : name of an indicator (0 or 1) variable
indicating event status at the end of the interval
* entrytime: name of the variable specifying the time
at the start of the interval
— (does not need to be supplied)

- “stset, clear” resets the data set 57

Stata: Kaplan-Meier Commands

» Syntax for getting estimates, plots

— Plotting survival curves
e “sts graph”
*“sts graph, atrisk”

e “sts graph, cens(s)’
— Listing survival estimates
e “sts list”
— Saving survival estimates

e “sts gen newvar = s”
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Example: PSA Data

* PSA data set
—infile ... obstime str8 inrem using psa.txt
—grelapse =0
— replace relapse = 1 if inrem=="no”
— stset obstime relapse
— sts graph, xtitle(“Time from Treatment (mos)”)
— sts list
—sts gen estremt =s

59

Example: KM Graph

* sts graph, xtitle(“Time (mos)”)
t1(“Probability of Remaining in Remission”)

Kaplan-Meier survival estimate
Probability of Remaining in Remission

050 075 100
I I I

025
I

000
I

60 80 60

40
Time (mos)




Example: KM Graph

[ XX XY (XX )

* sts graph, atrisk xtitle(“Time (mos)”)
t1(“Probability of Remaining in Remission”)

Kaplan-Meier survival estimate
Probability of Remaining in Remission

Example: KM Graph
* sts graph, cens(s) xtitle(“Time (mos)”)
t1(“Probability of Remaining in Remission”)

[ XXX

Kaplan-Meier survival estimate
Probability of Remaining in Remission
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Time (mos)
. .
Exalnple' KM LIStIng
.
(X XY [X X XY (Y XY (XX XY XXX X XY
* sts list
SIS 1IS
Beg. Net survivor std.
Time Total Fail Lost Function Error [95% Conf. Int.]
1 50 1 0 0.9800 0.0198 0.8664 0.9972
3 49 3 0 0.9200 0.0384 0.8007 0.9692
6 46 3 0 0.8600 0.0491 0.7286 0.9307
7 43 1 0 0.8400 0.0518 0.7054 0.9166
8 42 1 0 0.8200 0.0543 0.6826 0.9020
9 41 1 0 0.8000 0.0566 0.6602 0.8870
10 40 1 0 0.7800 0.0586 0.6381 0.8716
12 39 2 0 0.7400 0.0620 0.5947 0.8399
14 37 1 0 0.7200 0.0635 0.5735 0.8236
15 36 1 0 0.7000 0.0648 0.5525 0.8070
16 35 2 0 0.6600 0.0670 0.5114 0.7730
17 33 1 0 0.6400 0.0679 0.4911 0.7557
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--more--

°
g
5 T T T T
20 40 60 80 62
Time (mos)
E . [
Xan |pIe' KM LIStIng
.
(XX XY [X X XY (X XY (XX XY (X3
« sts list, at(24 27 30 33 36)
Beg. Survivor std.
Time Total Fail Function Error [95% Conf. Int.]
24 28 22 0.5600 0.0702 0.4124 0.6842
27 27 2 0.5185 0.070 0.3725 0.6461
30 25 1 0.4978 0.0 0.3529 0.6267
33 22 2 0.4545 0.0711 0.3124 0.5860
36 20 1 0.4318 0.0711 0.2913 0.5645
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