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Lecture Outline

• Graphical Depiction of the Entire  Distn
• Methods for Right Censored Data

– Setting
– Motivating example
– Estimation of survivor functions

• Life table methods
• Kaplan-Meier estimates
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Graphical Characterizations
of an Entire Distribution

4

Probability Distribution Function

• For ordered variables, we define
– Cumulative distribution function (cdf):

• F(x) = Pr (X ≤ x)
– Survivor function: 

• S(x) = Pr (X > x) = 1 – F(x)
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Empirical Distribution Function

• Sample cumulative distribution function or 
survivor function can be used as an 
estimate
– (Just treat the sample as if it were the 

population)

• These functions can sometimes be 
estimated for censored data (unlike 
histograms, densities, etc.)
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Empirical CDF: No Censoring

• Definition:
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Empirical CDF: Properties

• The empirical cdf assigns probability mass 
of 1/n at each observation
– Step function: 

• jumps at each observation
• level between observations

• The empirical cdf can be graphed for an 
ordered variable

• Because we draw conclusions from the spacing of 
the x-axis, this makes most sense when the 
measurements are on an interval  or ratio scale 8

Stata: Empirical CDF

• “cumul var, gen(Fvar) equal”
– Generates a new variable named Fvar with 

empirical CDF
– (Note the need to use the “equal” option to 

handle ties)
• “line Fvar var, sort 
connect(stairstep)”
– Produces empirical CDF (as a step function)
– (Note the need to use the “sort” option)
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Stata Ex: Age CDF (FEV data)

• cumul age, gen(Fage) equal
• line Fage age, 
connect(stairstp) sort 
xtitle(“Age (years)”) 
ytitle(“Empirical CDF”) 
t1(“Empirical CDF for Age in 
FEV Data”)
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Stata Ex: Age CDF (FEV data)
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Setting for Right
Censored Data

12

Missing Data

• Ideal: “Just say no.”
• Real life: “Missing data happens”

– Ignorable
• We can safely throw out the cases with missing 

data without biasing our results
– Nonignorable

• Omitting cases with missing data leads to 
erroneous conclusions
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Sad Facts of Life

• “Bloodsuckers hide beneath my bed”
– Eyepennies”, Mark Linkous (Sparklehorse)

• Typically, nothing in your data can tell you 
whether missing data is ignorable or 
nonignorable
– You just have to deal with what you worry 

about 14

Censored Data

• Special type of nonignorable missing data 
– The value is known to be in some interval, but 

the exact value is not always known
– Commonly arises when measuring time to 

some event
– Can also arise when measuring laboratory 

values due to nondetectable levels or 
saturation of the device

15

Types of Censored Data

• Right censoring:
– For some observations it is only known that 

the true value exceeds some threshold 
• Left censoring: 

– For some observations it is only known that 
the true value is below some threshold

• Interval censoring: 
– For some observations it is only known that 

the true value is between some thresholds
16

Example: Setting

• A clinical trial of aspirin in prevention of 
cardiovascular mortality
– 10,000 subjects are randomized equally to 

receive either aspirin or placebo
– Subjects are randomized over a three year 

period
– Subjects are followed for fatal events for an 

additional three year period following accrual 
of the last subject
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Example: Right Censoring

• Problem:
– At the end of the clinical trial, some subjects 

have been observed to die
• True time to death is known for these subjects

– At the end of the clinical trial, most subjects 
are likely to be still alive

• Death times of these subjects are only known to be 
longer than the observation time

• “(Right) Censored observations”

18

Example: Wrong Approach

• Cannot ignore censored data 
– These are our treatment successes
– If we throw these cases out of the dataset, we 

will underestimate the probability of longer 
survival

19

Example: Bad Solution #1

• Cannot just treat as binary (live/die) data
– Potential time of follow-up (censoring time) 

differs across subjects
• Administrative censoring (alive at time of analysis)
• Loss to follow-up due to adverse events

– Confounding vs loss of precision

20

Example: Bad Solution #2

• Should not just treat as binary (live/die) 
data at time of earliest censoring
– May not answer the scientific question

• Detecting short term versus long term effects
– Statistically less efficient
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Right Censored Data

• Notation:
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Motivating Example

23

Motivating Example

• Hypothetical study of subject survival
– Subjects accrued to study and followed until 

time of analysis
• Study done at three centers, which started the 

studies in three successive years
• Censoring time thus differs across centers

24

Data by Date (Real Time)
Staggered study entry by site

Accrual Group
Year                 A       B       C 

1990  On study      100      -- --
Died       43              

Surviving       57              

1991  On study       57     100      --
Died       27      53      

Surviving       30      47      

1992  On study       30      47     100 
Died       13      22      55 

Surviving       17      25      45 
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Data by Study Time
Realign data according to time on study

Accrual Group
Year                 A       B       C 

1   On study      100     100     100 
Died       43      53      55        

Surviving       57      47      45         

2   On study       57      47      --
Died       27      22      

Surviving       30      25      

3   On study       30      -- --
Died       13       

Surviving       17       26

Combined Data

Accrual Group
Year                 A       B       C      Combined 

1   On study      100     100     100         300
Died       43      53      55         151

Surviving       57      47      45         149 

2   On study       57      47      -- 104
Died       27      22                  49

Surviving       30      25                  55

3   On study       30      -- -- 30 
Died       13                          13

Surviving       17                          17

27

Problem Posed by Missing Data

• Sampling scheme causes (informative) 
missing data
– Potentially, we might want to estimate three 

year survival probabilities 

– Different centers contribute information for 
varying amounts of time

• One year survival can be estimated at A, B, C
• Two year survival can be estimated at A, B
• Three year survival can be estimated at A 28

Possible Remedies

– WRONG: Ignore missing
• E.g., 17 of 300 subjects alive at three years

– RIGHT BUT WRONG QUESTION: Use data 
only up to earliest censoring time

• E.g., 149 of 300 subjects alive at one year

– RIGHT BUT INEFFICIENT: Use only center A
• E.g., 17 of 100 subjects alive at three years
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Best Approach

– RIGHT AND EFFICIENT
• Use all available data to estimate that portion of 

survival for which it is informative
– Use Centers A, B, and C to estimate one year survival
– Use Centers A and B to estimate proportion of one-year 

survivors who survive to two years
– Use Center A to estimate proportion of two-year 

survivors who survive to three years

30

Theoretical Basis for Approach

• Properties of probabilities
– Probability of event A and B occurring is 

product of
• Probability that A occurs when B has occurred
• Probability that B has occurred

( ) ( ) ( )BBABA Pr|PrPr  ×=∩
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Application of Theory to Survival

• For times T1 < T2 , probability of surviving 
beyond time T2 is the product of
– Probability of surviving beyond time T2 given 

survival beyond time T1, and
– Probability of surviving beyond time T1
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Estimate Conditional Survival

• Condition on surviving up until the start of 
the time interval
– Denominator is number of subjects at start of 

interval
– Numerator is deaths during the interval

• Requirement for validity
– Subjects available at the start of each time 

interval are a random sample of the 
population surviving to that time

• “Noninformative censoring”
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Estimate Survival Probability

• Estimate probability of survival at the 
endpoint of  each time interval

– Multiply the conditional probabilities for all 
intervals prior to the time point of interest

34

Application to Example

• Within interval conditional probabilities
• Use A, B, C to estimate Pr (T0 ≥ 1)
• Use A, B      to estimate Pr (T0 ≥ 2 | T0 ≥ 1)
• Use A           to estimate Pr (T0 ≥ 3 | T0 ≥ 2)

• Multiply to obtain unconditional cumulative 
survival

• Pr (T0 ≥ 1)
• Pr (T0 ≥ 2) =  Pr (T0 ≥ 2 | T0 ≥ 1)  Pr (T0 ≥ 1)
• Pr (T0 ≥ 3) =  Pr (T0 ≥ 3 | T0 ≥ 2)  Pr(T0 ≥ 2)

35

Motivating Example Results

Survival Probabilities 

Yr  Combined       Each Year                Cumulative

1  On study 300
Died 151

Surviving 149  149/300 = 49.67%                   49.67%

2  On study 104
Died  49

Surviving  55   55/104 = 52.88%     .4967*.5288 = 26.27%

3  On study  30   
Died  13  

Surviving  17   17/ 30 = 56.67%     .2627*.5667 = 14.88%
36

Estimation of
Survivor Functions
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Noninformative Censoring

• When estimating survivor functions using 
censored data:
– Censoring must not be informative

• Censored subjects neither more nor less likely to 
have an event in the immediate future

– Censored individuals must be a random 
sample of those at risk at time of censoring

– (Later: a random sample from all subjects at 
risk having similar modeled covariates)

38

Informative Censoring Examples

– Subjects in a clinical trial are withdrawn due to 
treatment failure (likely they would die sooner 
than those remaining)

– Subjects in a clinical trial in a fatal condition 
are lost to follow up when they go on vacation 
(likely they are healthier than those 
remaining)

39

Informative Censoring Examples

– Leukemia patients in a clinical trial of bone 
marrow transplantation are censored if they 
die of infections rather than dying of cancer 
(the subjects who died of infections might 
have had a more effective regimen to wipe 
out existing cancer)

40

Detecting Informative Censoring

• As a general rule it is impossible to use 
the data to detect informative censoring
– The necessary data is almost certainly 

missing in the data set
– In some cases, it is impossible to ever 

observe the missing data
• Nonfelines can only die once
• We cannot observe whether subjects dying of one 

cause are more or less likely to die of another if we 
cure them of the first cause
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Life Table Methods

• In the actuarial (e.g., insurance) setting
– The time intervals are often chosen by years, 

decades, etc.

– The data are presented for each year as
• Nj: Number of subjects at risk at start of interval
• Cj: Number censored during interval (these will 

contribute half a person)
• Dj: Number of events in interval

42

Life Table Methods: Notation

• Number at risk, censored, failed in each 
interval 
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Life Table Methods: Formula

• Computation of probability of survival 
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Kaplan-Meier Estimates

• Kaplan-Meier (Product Limit) Estimates
– With more precisely measured individual data

• The time intervals are defined by unique 
observation times

• The data are presented for each year as
– Nj: Number of subjects at risk at start of interval
– Dj: Number of events at end of interval
– (Note no censoring or events during interval by definition)
– (Note also that for ties, censoring occurs after deaths)
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Kaplan-Meier Notation

• Definition of intervals, number at risk, 
failures 
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Kaplan-Meier Hazard Estimates

• Computation of hazard and conditional 
probability of survival in interval 
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Kaplan-Meier Survival Estimate

• Estimating survival probability 
S(t) = Pr (T0 > t)
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If Last Observation Censored

– Note that in the above definition, for an 
interval which ends in a censored observation 
with no observed events, the conditional 
probability of surviving within the interval is 1.

– Note also that if the largest observation time 
is censored, the KM (PLE) survivor function 
never goes to zero

• We generally regard the KM (PLE) survivor 
function to be undefined for times beyond the 
largest observation time in this situation
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Kaplan-Meier Properties

• The KM (PLE) survivor functions can be 
shown to be
– Consistent: As sample sizes go to infinity, 

they estimate the true value
– Nonparametric maximum likelihood estimates

• But usual asymptotic (large sample) theory for 
regular, parametric MLE’s does not apply

• Asymptotic (large sample) normal distribution for 
estimates was established differently

50

Other Derivations of KM

• The KM (PLE) survivor functions can also 
be derived as the

• Self-consistent estimator (see Miller, Survival 
Analysis)

• “Redistribute to the right” estimator

51

Redistribute to the Right

• Basic idea
– Recall the empirical cdf assigns probability 

1/n to each observation

– A censored observation should be equally 
likely to have event time like any of the 
remaining uncensored observations

• Recursively redistribute the mass of each 
censored observation among the subjects 
remaining at risk

52

Ex: Redistribute to the Right

– Data: 1, 3, 4*, 5, 7*, 9, 10 
• (asterisk means censored)

– Initially: each point has mass 1/7

– Determine probability of events at earliest 
observed (uncensored) event times

• Pr (T0 = 1) = 1/7
• Pr (T0 = 3) = 1/7
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Ex: Redistribute to the Right

– Censored observation at 4
• Divide the mass at 4 equally among the remaining 

subjects at risk
– Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10

– Determine probability of events at next 
observed (uncensored) event times

• Pr (T0 = 5) = 5/28

54

Ex: Redistribute to the Right

– Censored observation at 7
• Divide the mass at 7 equally among the remaining 

subjects at risk
– Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10

– Determine probability of events at next 
observed (uncensored) event times

• Pr (T0 = 9) = 15/56
• Pr (T0 = 10) = 15/56

55

Ex: Redistribute to the Right

Kaplan-Meier estimate of Survival

t Pr (T0 = t) Pr (T0 > t)
0                               1.000
1     1/ 7 = 0.143               .857
3     1/ 7 = 0.143               .714
4            0.000               .714
5     5/28 = 0.179               .536 
7            0.000               .536
9    15/56 = 0.268               .268

10    15/56 = 0.268               .000

56

Stata: Kaplan-Meier Commands

• First step is declaring data to be of 
censored survival type
– Potentially three variables may be used 

• Start of interval
– Assumed to be at time 0 if nothing supplied

• End of interval
• Status at end of interval

– 0 = censored
– Nonzero = event occurred at end of interval 
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Stata: Kaplan-Meier Commands

• Syntax for “setting survival data”
– “stset endtime eventind, 
t0(entrytime)”

• endtime: name of the variable measuring the time 
at the end of the interval

• eventind : name of an indicator (0 or 1) variable 
indicating event status at the end of the interval

• entrytime: name of the variable specifying the time 
at the start of the interval

– (does not need to be supplied)

– “stset, clear” resets the data set 58

Stata: Kaplan-Meier Commands

• Syntax for getting estimates, plots
– Plotting survival curves

•“sts graph”
•“sts graph, atrisk”

•“sts graph, cens(s)”

– Listing survival estimates
•“sts list”

– Saving survival estimates
•“sts gen newvar = s”

59

Example: PSA Data

• PSA data set
– infile … obstime str8 inrem using psa.txt
– g relapse = 0
– replace relapse = 1 if inrem==“no”
– stset obstime relapse
– sts graph, xtitle(“Time from Treatment (mos)”)
– sts list
– sts gen estremt = s

60

Example: KM Graph

• sts graph, xtitle(“Time (mos)”) 
t1(“Probability of Remaining in Remission”)
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Example: KM Graph

• sts graph, atrisk xtitle(“Time (mos)”) 
t1(“Probability of Remaining in Remission”)
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Example: KM Graph

• sts graph, cens(s) xtitle(“Time (mos)”) 
t1(“Probability of Remaining in Remission”)
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Example: KM Listing

• sts list
Beg.          Net      Survivor      Std.                      

Time    Total   Fail   Lost     Function     Error     [95% Conf. Int.] 
-------------------------------------------------------------------------

1       50      1      0       0.9800    0.0198     0.8664 0.9972 
3       49      3      0       0.9200    0.0384     0.8007 0.9692 
6       46      3      0       0.8600    0.0491     0.7286 0.9307 
7       43      1      0       0.8400    0.0518     0.7054 0.9166 
8       42      1      0       0.8200    0.0543     0.6826 0.9020 
9       41      1      0       0.8000    0.0566     0.6602 0.8870 

10       40      1      0       0.7800    0.0586     0.6381 0.8716 
12       39      2      0       0.7400    0.0620     0.5947 0.8399 
14       37      1      0       0.7200    0.0635     0.5735 0.8236 
15       36      1      0       0.7000    0.0648     0.5525 0.8070 
16       35      2      0       0.6600    0.0670     0.5114 0.7730 
17       33      1      0       0.6400    0.0679     0.4911 0.7557 

--more--
64

Example: KM Listing

• sts list, at(24 27 30 33 36)

Beg.                      Survivor      Std.
Time     Total     Fail             Function     Error     [95% Conf. Int.]

-------------------------------------------------------------------------------
24        28       22              0.5600    0.0702     0.4124    0.6842
27        27 2              0.5185    0.0709     0.3725    0.6461
30        25        1              0.4978    0.0710     0.3529    0.6267
33        22        2              0.4545    0.0711     0.3124    0.5860
36        20        1              0.4318    0.0711     0.2913    0.5645

-------------------------------------------------------------------------------


