

Biost 517

Applied Biostatistics I

Scott S. Emerson, M.D., Ph.D.
Professor of Biostatistics
University of Washington

Lecture 3: Overview of Descriptive Statistics

October 2, 2006

© 2002, 2003, 2005 Scott S. Emerson, M.D., Ph.D.

1

Lecture Outline

- Purpose of Descriptive Statistics
- General Methods
- Types of Measurements
- Types of Summary Measures
 - Univariate
 - Bivariate
 - Three or more variables

2

Purpose of Descriptive Statistics

3

Purpose of Descriptive Statistics

- Identify errors in measurement, data collection
- Characterize materials and methods
- Assess validity of assumptions needed for analysis
- Straightforward estimates to address scientific question
- Hypothesis generation

4

Purpose: Identify errors

- Identify errors in measurement, data collection
 - Impossible, improbable, or inappropriate values
 - Univariate: Too low or too high
 - Multivariate: Strange combinations
 - Missing data
 - Univariate: Number missing by measurement
 - Multivariate: Predictors of missing data

5

Purpose: Materials and Methods

- Characterize materials and methods
 - Describe subjects used in study
 - Univariate
 - Often broad ranges specified in inclusion/exclusion criteria
 - Want to know exact distributions obtained
 - Multivariately
 - Rarely are sample sizes defined for combinations of variables
 - E.g., in the sample are males old and females young?

6

Purpose: Validity of Assumptions

- Assess validity of assumptions needed for analysis
 - Distributional assumptions
 - Within groups
 - e.g., exponential, Poisson distributions
 - Between groups
 - e.g., equal variances, proportional hazards
 - Modeling of dose response
 - Linearity of association
 - Influential or outlying cases

7

Purpose: Confounding

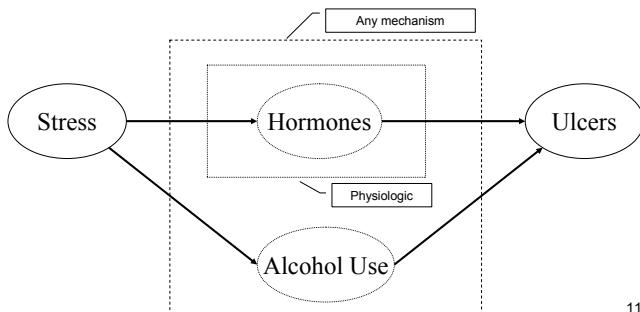
- Assumptions about presence/absence of confounding
 - Confounding: A third variable confuses the estimation of an association between a predictor of interest and the outcome variable
 - Definition of a confounder:
 - Associated with the outcome (in a causal manner but not in pathway of interest)
 - Associated with the predictor of interest in the sample

8

Example: Stress and Ulcers

- Alcohol consumption is thought to irritate stomach lining (thus causally associated with outcome)
- Many people drink alcohol when stressed (thus associated with predictor of interest)
 - If association truly exists in the population, it may well also exist in the sample
 - But consider randomization which (in some sense) precludes confounding

9


Example: Stress and Ulcers

- Is EtOH consumption a confounder?
 - In causal pathway of interest?
 - Yes, if interested in all ways stress might cause ulcers
 - No, if only interested in determining whether the physiologic consequences of stress cause ulcers

10

Example: Stress and Ulcers

- Causal pathway diagram

11

Purpose: Preliminary Estimates

- Estimates for statistical inference
 - Many estimates used in statistical inference are based on sample descriptive statistics
 - E.g., method of moments estimators are defined by using sample moments (means, variances, etc.) to estimate population moments

12

Purpose: Generate Hypotheses

.....

- Exploring unanticipated effects
- Characterization of dose-response
 - Linear
 - U-shaped
 - Threshold
- Exploring difference in effects across subgroups
 - E.g., is association between treatment and clinical outcome similar in men and women

13

General Methods

.....

14

General Process

.....

- From study protocol
 - Describe sampling methods
 - Identify variables
 - Scientific role, statistical role, type of measurement
- From data
 - Univariate statistics
 - Bivariate statistics
 - Three or more variables

15

1. Identify Sampling Scheme

.....

- Describe sampling methods
 - Source of data
 - Location, time
 - Selection criteria
 - Inclusion criteria
 - Exclusion criteria

16

Constrained Sample Sizes

- Sample sizes specified by design
 - Overall and/or within prespecified strata
 - E.g., cohort or case-control designs
- Sample sizes reflecting random process
 - Sometimes sampling scheme specifies time and location of sampling, not sample size
 - Allows estimate of prevalence or incidence
 - E.g., sample all cases of new lung cancer in Seattle during 1999
 - Sample size can be used to estimate incidence of lung cancer

17

Common Study Designs

- Cross-sectional studies (surveys)
- Cohort studies
- Case-control studies
- Interventional studies

18

Cross-sectional Studies

- Surveys of subjects sampled from a population
- Real or event time
- Efficient for examining
 - Common outcomes and risk factors
 - Associations (not cause and effect)
 - Can estimate prevalence of risk factors and outcomes
 - Overall and within groups

19

Cohort Studies

- Groups defined by risk factor
 - Identified prospectively or retrospectively
- Followed longitudinally for outcome(s)
- Efficient for examining
 - Common outcomes
 - Many different outcomes for same exposure
 - Associations (not cause and effect)
 - Estimate incidence within risk factor groups
 - Cannot estimate prevalence of risk factor

20

Case-Control Studies

- Groups defined by some outcome event
- Characterize prior exposures
 - Longitudinal study into the past
- Efficient for examining
 - Rare outcomes
 - Many different risk factors for same outcome
 - Associations (not cause and effect)
 - Estimate prevalence of exposure by disease
 - Cannot estimate prevalence of disease

21

Interventional Studies

- Subjects assigned to some intervention
 - Ideally controlled, randomized
- Followed longitudinally for some outcome
 - So a special case of a cohort study
- Efficient for examining
 - Common outcomes
 - Cause and effect

22

Detecting Associations

- Cross-sectional surveys show
 - $E(D | R = R_1) \neq E(D | R = r_2)$, OR
 - $E(R | D = d_1) \neq E(R | D = d_2)$
- Cohort studies show
 - $E(D | R = r_1) \neq E(D | R = r_2)$
- Case-control studies show
 - $E(R | D = d_1) \neq E(R | D = d_2)$

23

Detecting Cause and Effect

- Demonstrated rigorously only through randomized studies
 - A characteristic of study design
 - There is nothing in the data that can distinguish between randomized studies and observational studies

24

2. Identify Variables of Interest

- Identify variables of interest according to
 - Scientific meaning
 - Statistical role
 - Type of measurement

25

Scientific Meaning of Variables

- Demographic variables
- Measures of exposure
- Measures of concurrent disease
- Measures of severity of disease
 - Cardiovascular function
 - Liver function
 - etc.
- Measures of clinical outcomes
- etc.

26

Statistical Role of Variables

- Outcome (response) variable(s)
 - Primary and surrogates
- Predictor(s) of interest (define main groups)
- Subgroups of interest for effect modification
- Potential confounders
- Variables that add precision to analysis
 - Known to be associated with response
 - Often these are potential confounders
 - may be associated with predictor(s) of interest in sample
- Irrelevant to current question

27

3. Identify Type of Measurement

- The way in which a variable is measured will affect the descriptive statistics that are of interest
 - Binary (dichotomous, Bernoulli)
 - Nominal (unordered categorical)
 - Ordered categorical
 - Quantitative
 - Discrete, interval continuous, ratio continuous
 - Censored

28

Types of Measurements

.....

29

Characterizing Measurements

.....

- Number of possible values
 - One, two, finite, countably/uncountably infinite
- Comparisons between values
 - Unordered, partially ordered, totally ordered
 - Scientific relevance of differences, ratios
- Completeness of measurement
 - Censoring

30

Binary Measurements

.....

- Only two possible values, which can be either
 - Labels, e.g., “Male” or “Female”
 - Coded as numbers, e.g., 1 or 2
- Most often it is statistically advantageous to represent as “indicator variables”
 - Possible values 0 or 1
 - 1 indicates the quality named by the variable
 - E.g., MALE is 1 for males, 0 for females
 - E.g., MARRIED is 1 for married, 0 for single, divorced, widowed, everything else

31

Properties of Binary Measures

.....

- Ordered
 - Differences (but not ratios) have a scientific interpretation
- The mean of an indicator variable is the proportion of subjects having the corresponding quality
 - Differences of means are scientifically relevant
 - Ratios of means are scientifically relevant
 - (Both differences and ratios of means may have limited ranges of interest for a specific problem)

32

Categorical Measurements

- A finite number of possible values denoting qualities
 - E.g., occupation is laborer, clerical, professional, retired
 - E.g., marital status is single, cohabiting, married, divorced, separated, widowed
 - E.g., stage of cancer is I, II, III, or IV

33

Unordered Categorical

- Unordered: no clear ordering of values can be prespecified
 - E.g., marital status
 - E.g., occupation status (unless used as a surrogate for physical exertion, sun exposure, etc.)

34

Totally Ordered Categorical

- Totally ordered: categories can be qualitatively, but not quantitatively, ordered
 - Neither differences nor ratios have consistent scientific meaning
 - E.g., stage of cancer, degree of swelling

35

Partially Ordered Categorical

- Partially ordered
 - Some categories have clear ordering, but others cannot be
 - E.g., Atypia on Pap smear often has “indeterminate” results
 - E.g., Severity of cancer might involve both grade and stage
 - May be hard to decide which is severe:
 - » Low grade and high stage, or
 - » High grade and low stage

36

Means of Categorical Variables

- Descriptively of less interest even for ordered
 - Spacing between categories is not well-defined
- However,
 - Means sometimes can still be used to identify (but not quantify) differences between distributions of categorical variables
 - Means may be particularly attractive in detecting shifts toward higher levels across groups with totally ordered categorical variables

37

Quantitative Variables

- Values represent a (reasonably) precise quantification of some scientific measure
- Values can be
 - Discrete levels
 - No possible measurements between adjacent levels
 - E.g., counts of events
 - Continuous levels
 - E.g., weight
 - Distinction is often more a question of number of levels:
 - » Money is measured to nearest \$0.01
 - » But often regarded as continuous

38

Interval vs Ratio Measurements

- Generally, differences make sense for all quantitative variables
- Ratios only make sense if measurements are made relative to an absolute zero
 - Age, height, weight have absolute zeroes
 - Temperature has different zeroes in Fahrenheit and Celsius
- Categories of quantitative variables:
 - Interval: Only differences make clear sense
 - Ratio: Both differences and ratios of interest

39

General Use of Ratios

- Ratios have no scientific relevance with interval measurements
 - Thus not of great interest descriptively
 - May still be of use in identifying differences in distributions across groups
 - E.g., A ratio of temperatures different from 1 indicates different distributions
- Quantifying differences in distributions will be specific to units used
 - Twice as hot in Fahrenheit vs twice as hot in Celsius

Censored Variables

- A special type of missing data commonly arises in applications due to censored measurements (the exact value is not always known)
 - Right censoring: for some observations it is only known that the true value exceeds some threshold
 - Left censoring: for some observations it is only known that the true value is below some threshold
 - Interval censoring: for some observations it is only known that the true value is between two thresholds

41

Example: Right Censoring

- Clinical trial detecting effect of aspirin on cardiovascular death
 - At the time of data analysis, death times have been observed for some subjects
 - At the time of data analysis, some subjects are still alive
- Representation of data using two variables
 - A variable measuring observation time until death or time of analysis, whichever comes first
 - An indicator variable telling which times are death times

42

Types of Summary Measures

43

Types of Summary Measures

- By feature of distribution
 - Typical value (location)
 - Spread of distribution (variability)
 - Symmetry of distribution (skewness)
 - Tendency to extreme values (kurtosis)
 - Depiction of entire distribution
- By number of variables described
 - Univariate
 - Bivariate
 - Higher dimensional

44

Univariate Location

- Measures of location (“Typical value”)
 - Numeric
 - Mode
 - Mean (arithmetic, geometric, harmonic)
 - Median (other percentiles)
 - Proportion exceeding a threshold
 - Odds of exceeding a threshold
 - Graphical
 - Mode of density

45

Univariate Spread

- Measures of spread
 - Numeric
 - Range (min, max)
 - Interquartile range (25%ile, 75%ile)
 - Variance
 - Standard deviation
 - Graphical
 - Box plot
 - Histogram
 - Density

46

Univariate Symmetry

- Measures of symmetry
 - Numeric
 - Coefficient of skewness
 - (Compare mean and median, etc.)
 - Graphical
 - Histogram
 - Density
 - Box plot

47

Univariate “Heavy Tails”

- Measures of tendency to extreme values
 - Numeric
 - Coefficient of kurtosis

48

Univariate Entire Distribution

- Numeric
 - Frequency tables
 - CDF tables
- Graphical
 - Histogram (stem-leaf)
 - Ogive
 - Density estimates
 - Empirical CDF, survival curves
 - Hazards
 - Box plots

49

Bivariate Summary Measures

- Measures of association
 - Numeric
 - Stratified univariate descriptives
 - Slope of best fitting line
 - Correlation
 - Rank correlation
 - Graphical
 - Least squares line
 - Scatterplot smoother
 - Stratified box plots

50

Bivariate Outliers

- Outliers: Data points far from any others
 - Numeric
 - Hat matrix
 - Graphical
 - Scatterplot

51

Bivariate Entire Distribution

- Characterization of entire distribution
 - Numeric
 - Cross tabulation
 - Graphical
 - Scatterplot

52

Three or More Variables

- Measures of association
 - Numeric
 - Stratified univariate descriptives
 - Graphical
 - Stratified least squares
 - Stratified scatterplot smoothers

53

Three or More Variables

- Measures of interaction (effect modification)
 - Numeric
 - Stratified descriptives of bivariate association
 - Graphical
 - Stratified least squares
 - Stratified scatterplot smoothers

54

Three or More Variables

- Measures of outlying values
 - Numeric
 - Hat matrix

55

Three or More Variables

- Characterization of entire distribution
 - Numeric
 - Cross tabulation
 - Graphical
 - Stratified scatterplots

56

What Do I Really Use?

- Univariate
 - Number of Missing
 - Mean
 - Standard Deviation
 - Min, Max
 - 25th, 50th (median), 75th percentile
- Bivariate (and Trivariate)
 - Scatterplots (and smooths)
 - Stratified statistics