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Use of Logarithmic Transformations

Review of Logarithms

1. Recall from basic algebra that when you multiply two numbers, you add exponents. That is, if you
want to multiply 103 time 107, the answer is 1010.

2. This only works when you express the numbers as exponents of the same base. Hence, we can not so
easily multiply 23 times 45. Instead, we would want to convert each number to be a power of the same
base. In the problem I have given here, this is easy, because 4 = 22. Hence, 45 = (22)5 = 210.

3. It is possible to raise a base number to a fractional power. For instance, 40.5 is just the square root of
4, or 2. Similarly, 810.25 is the fourth root of 81 (the square root of the square root), or 3.

4. Before calculators were in widespread use (I can remember back that far), logarithms were used to
make multiplication problems easier. That is, every number was converted to an exponential form, the
exponents were added, and then the answer was converted back.

5. In this process, some common base for the exponential form would have to be chosen. Commonly that
base was 10. The logarithm base 10 of a number was just the exponent of the number expressed as a
power of 10. For instance, because 102 = 100, the logarithm base 10 of 100 is 2. Similarly, the logarithm
base 10 of 1000 is 3, because 103 = 1000.

6. Every positive number can be expressed as a power of 10. For instance, 100.3010 = 2. Finding the
appropriate exponent for such a representation (that exponent is termed the logarithm base 10, so the
logarithm base 10 of 2 is 0.3010) involves a complicated formula, and in the old days tables were used.
Now most calculators have a button you can push to find the logarithm base 10 of a number.

7. More generally, we can talk about the logarithm base k of a number x, which we will write as logk(x).
k can be any positive number; it does not need to be an integer. If logk(x) = y, then ky = x. We
sometimes speak of the antilog base k of y as being x.

8. In earlier math courses, you probably learned a convention that writing ‘log’ was understood to mean
the base 10 logarithm and writing ‘ln’ was the natural logarithm (base e = 2.7182818 . . .). Like all
simple rules, however, this is violated regularly. In fact, it is common in science to use ‘log’ (with no
subscript) to mean the natural logarithm. Many statistical software packages use this convention. We
will see that this need not be so much of a problem, however.

9. Using different bases for logarithms is just like measuring length in different units (inches, feet, centime-
ters, miles, light years). No matter what base you use

log(1) = 0

This is because k0 = 1 for all numbers k.
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10. There is a constant of conversion between loge(x) and logk(x) for any base k. For instance, in the
following table of selected base 2, base 10, and base e logarithms

x log2(x) log10(x) loge(x) = ln(x)

1 0.000000 0.0000000 0.0000000
2 1.000000 0.3010300 0.6931472
3 1.584963 0.4771213 1.0986123
5 2.321928 0.6989700 1.6094379

10 3.321928 1.0000000 2.3025851
20 4.321928 1.3010300 2.9957323

you can get every number in one column by multiplying the number in another column by some constant.
For instance, every number in the log10(x) column is just .3010300 times the number in the log2(x)
column. Similarly, every number in the loge(x) column is just 2.3025851 times the number in the
log10(x) column. In general, then, we can find the base k logarithm of any number by either of the
following formulas

logk(x) = log10(x)/ log10(k)
logk(x) = loge(x)/ loge(k)

I know of no statistical packages that do not provide loge(x), and most provide log10(x) as well.

11. Important properties of the logarithm come from the properties of exponents:

a. logk(xy) = logk(x) + logk(y)

b. logk x − logk(y) = logk(x/y)

c. logk(xy) = y ∗ logk(x)

Logarithmic Transformations in One and Two Sample Problems

Suppose we have random variables Xi and Yi. If we take logarithmic transformations Wi = loge(Xi)
and Zi = log(eYi), then W is the natural log of the geometric mean of X, and Z is the natural log of the
geometric mean of Y . It follows, then, that eW and eZ , are respectively the geometric means of X and Y .

Furthermore, W − Z is the natural log of the ratio of geometric means. (The log of a ratio is the
difference of the logs.) Thus, when we do inference using W and Z, we can easily back transform the data to
get the geometric means and ratios of geometric means. Such back transformation works for point estimates
and confidence intervals. For instance, eW−Z = eW /eZ is the ratio of the geometric mean for X to the
geometric mean for Y .

I note that if the log transformed data are symmetric, then the geometric mean and the median are
the same number. In that case, we could refer to the ratio of medians. As a general rule, however, a larger
sample size is required to be sure that a distribution is symmetric than is required to estimate the geometric
means. Hence, I do not really recommend that you presume symmetry. It is safer to just talk about the
geometric means.
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Logarithmic Transformations in Regression Models

Transformations of Predictors

Suppose we model
E[Y ] = β0 + β1 × logk(X)

1. From our standard interpretation of regression slope parameters, we know that every 1 unit difference
in logk(X) is associated with a β1 unit difference in the expected value of Y .

2. Similarly, we know that every c unit difference in logk(X) is associated with a cβ1 unit difference in the
expected value of Y .

3. Now, a 1 unit difference in logk(X) corresponds to a k-fold increase in X, and a c unit difference in
logk(X) corresponds to a kc-fold increase in X.

Ex: A 1 unit change in log10(CHOLEST ) corresponds to a 10 fold increase in CHOLEST . A 3 unit
change in log2(CHOLEST ) corresponds to a 23 = 8 fold increase in cholesterol.

4. If we want to talk about a 10% increase in X, then that would correspond to a c = logk(1.1) unit increase
in logk(X).

Ex: Suppose we model predictor HEIGHT on a log base 10 scale. Because we never see a 10 fold in-
crease in height, when interpreting our model parameters it might be better to consider comparisons
between populations which differ in height by, say, 10%. We would then estimate the difference
in the expected response as log10(1.1)β̂1, where β̂1 was the least squares estimate for the slope
parameter in the regression. Note that we would find a confidence interval for the effect associated
with that 10% change in height by multiplying the CI for β1 by log10(1.1) as well. (If you wanted
to get a statistical package to do all this for you, just use the base 1.1 logarithm for height in the
regression model. Then a 1 unit change in your predictor corresponds to a 10% change in height.)

Transformation of Response

Suppose we model (for arbitrary base j)

E[logj(Y )] = β0 + β1 × X

1. Using the standard interpretation of regression slope parameters, we know that every 1 unit difference
in X is associated with a β1 unit difference in the expected value of logj(Y ), and every c unit difference
in X is associated with a cβ1 unit difference in the expected value of logj(Y ).

2. Unfortunately, a β1 unit difference in the expected value of logj(Y ) does not have an easy interpretation
in the expected value of Y . However, statements made about the distribution of logj(Y ) are generally
not well understood by the general population, so we need to find another way.

3. The expected value of logj(Y ) is the log of the geometric mean of Y . Thus, we can make statements
about the geometric mean of Y considering our model to be

E[logj(Y )] = logj(GeomMn[Y ]) = β0 + β1 × X

4. Under this modification, a β1 unit difference in the base j logarithm of the geometric mean of Y
corresponds to a jβ1-fold change in the geometric mean of Y . Similarly, a cβ1 unit difference in the base
j logarithm of the geometric mean of Y corresponds to a jcβ1-fold change in the geometric mean of Y .
We can say that jcβ1 is the ratio of geometric means for two populations which differ by c units in their
values for X.
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5. It is probably easiest to use j = 10 or j = e, because most calculators have a button that will compute
the antilogs for those bases.

6. (A very special case in which we can talk about medians. I truly recommend talking about geometric
means, instead.) I note that under standard assumptions of linear regression, the expected value of
logj(Y ) is also the median of logj(Y ). (Actually, we do not need normality, but we do need the error
distribution to be symmetric about its mean. If you do assume normality, then we can state our
assumption as being that Y has the lognormal distribution in each subpopulation.) Thus, we can make
statements about the median of Y considering our model to be

mdn[logj(Y )] = logj(mdn[Y ]) = β0 + β1 × X

Under this modification, a β1 unit difference in the base j logarithm of the median of Y corresponds
to a jβ1 -fold change in the median of Y . Similarly, a cβ1 unit difference in the base j logarithm of the
median of Y corresponds to a jcβ1-fold change in the median of Y . We can say that jcβ1 is the ratio of
medians for two populations which differ by c units in their values for X.

Transformations of the Response and Predictor

This is just a combination of the above settings. That is, we talk about the ratio of geometric means of
Y associated with a several-fold increase in X. Suppose we model (for arbitrary bases j and k)

E[logj(Y )] = β0 + β1 × logk(X)

1. An r-fold change in X (so a c = logk(r) unit difference in logk(X)) will be associated with an rβ1/ logj k-
fold change in the geometric mean of Y . That is, the geometric mean ratio of Y is rβ1/ logj k when
comparing two populations, one of which has X r times higher than the other.

2. The above formula becomes much easier if the same base is used for both predictor and response. In
this case, j = k, and the geometric mean ratio is simply rβ1 when comparing two populations, one of
which has X r times higher than the other.


