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Midterm Examination Key
May 3, 1999

In this key, the answer given in boldface was considered sufficient to receive full credit.

1. Consider a regression model in which response variables Yi, i = 1, . . . , n satisfy

Yi = β0 + Ziβ1 + Wiβ2 + εi

with the εi’s independent and identically distributed according to E(εi) = 0, V ar(εi) = σ2. We consider the
situation in which we are interested in making inference about β1 , and we are trying to decide whether to regress
�Y on the full model including �Z and �W , or whether to regress �Y on a reduced model including only �Z as a
predictor (in both cases we will include an intercept). Notationally, the reduced model is

Yi = γ0 + Ziγ1 + ε∗i

and let X = (�1n
�Z �W ) and U = (�1n

�Z) be the design matrices for the full and reduced models, respectively,

with �̂β and �̂γ be the ordinary least squares estimates from the corresponding regression models.

a. Without loss of generality, we may assume
∑n

i=1 Zi = 0 and
∑n

i=1 Wi = 0. Why?

Ans: Centering the variables will change the estimate of the intercept parameter, but will not
affect the estimates of the slope. (See the key to homework #3.)

b. Under what conditions does γ̂1 = β̂1?

Ans: Equality of the estimates holds if the sample correlation rZW between �Z and �W is zero.

�̂β = (XT X)−1XT �Y , and letting SWW =
∑n

i=1 W 2
i , SZZ =

∑n
i=1 Z2

i , SZW =
∑n

i=1 ZiWi, SWY =∑n
i=1 WiYi, SZY =

∑n
i=1 ZiYi, and rZW = SZW /

√
SZZSWW ,

XTX =

 n 0 0
0 SZZ SZW

0 SZW SWW



(XTX)−1 =


1
n

0 0

0 1
SZZ (1−r2

ZW
)

− r2
ZW

SZW (1−r2
ZW

)

0 − r2
ZW

SZW (1−r2
ZW

)
1

SW W (1−r2
ZW

)

 XT �Y =

 nY
SZY

SWZ



�̂β =

 Y
SZY

SZZ(1−r2
ZW

)
− SW Y r2

ZW

SZW (1−r2
ZW

)

SWY

SWW (1−r2
ZW

)
− SZY r2

ZW

SZW (1−r2
ZW

)


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�̂γ = (UTU)−1UT �Y , and

UTU =
(

n 0
0 SZZ

)

(UTU)−1 =
(

1
n 0
0 1

SZZ

)
UT �Y =

(
nY
SZY

)

�̂γ =
(

Y
SZY

SZZ

)

By inspection, then, γ̂1 = β̂1 if SZW = 0, which in turn implies rZW = 0.

c. What are the expectations of �̂β and �̂γ? Under what conditions is γ̂1 unbiased for β1?

Ans: The slope estimate from the reduced model is unbiased for the true slope if rZW = 0 OR
β2 = 0.

E[�Y ] = X�β, and as X = (U �W ) we have

E[ �̂β] = (XTX)−1XTX�β = �β

E[�̂γ] = (UTU)−1UTX�β

= (UTU)−1UT
(
U �W

)
�β

= (UTU)−1UT

(
U
(

β0

β1

)
+ �Wβ2

)
= (UTU)−1UTU

(
β0

β1

)
+ (UTU)−1UT �Wβ2

=
(

β0

β1

)
+
(

0
SZW β2

SZZ

)

By inspection, γ̂1 is unbiased for β1 when SZW = 0 (no linear association between �Z and �W ) or when
β2 = 0 (no linear association between �W and �Y ).

d. What is the variance of �̂β and �̂γ? Under what conditions is V ar(γ̂1) = V ar(β̂1)?

Ans: For the full model V ar(�̂β) = σ2(XTX)−1, and for the reduced model V ar(�̂γ) = τ2(UTU)−1

where τ2 is the error variance for the reduced model. The variances of the slope estimates
are equal if the sample correlation rZW between �Z and �W is zero AND σ2 = τ2. Note that
τ2 = σ2 + β2

2V ar(Wi|Zi), so σ2 = τ2 if β2 = 0 OR V ar(Wi|Zi) = 0. The latter condition would
hold when we wish to treat the relationship between �Z and �W as fixed by design. However,
it should be noted that when we regard that the relationship between �Z and �W is fixed by design, using
the variance estimate from the reduced model will estimate V̂ ar(γ̂1) as if �W were a random variable,
and thus the variance estimate will be too large. This means that the true type I error will be smaller
than desired (a conservative test) and the statistical power will be smaller than desired. Hence, if we
design an experiment to have some covariate uncorrelated with our predictor of interest, then it is
imperative that we model that predictor if we are to realize the full statistical efficiency of our design.

For the full model, V ar(�̂β) = σ2(XTX)−1, and from the derivations given in the answer to part (b)

V ar(β̂1) =
σ2

SZZ(1 − r2
ZW )
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For the reduced model,

V ar(�̂γ) = (UTU)−1UT V ar(�Y | �Z)U(UTU)−1 = V ar(�Y | �Z)(UTU)−1

and V ar(�Y | �Z) = β2
2V ar(W |Z) + σ2. So

V ar(γ̂1) =
σ2 + β2

2V ar(W |Z)
SZZ

The results follow by inspection.

e. Suppose β2 = 0 and
∑n

i=1 ZiWi = 0. What are the relative advantages and disadvantages of choosing the
reduced model over the full model?

Ans: By the above, the inference based on the asymptotic distribution for the slope parameter
for �Z will be the same in the two models. Thus it is immaterial which model we would
choose in large samples. Simplicity would argue for the reduced model. (In small samples,
we will use one degree of freedom to estimate β̂2 in the full model, and that will have a very slight effect
on the power to make inference about β̂1 using the t distribution. Thus in small samples it is preferable
to use the reduced model in this situation.)

f. Suppose β2 = 0 and
∑n

i=1 ZiWi �= 0. What are the relative advantages and disadvantages of choosing the
reduced model over the full model?

Ans: By the above, the slope estimate in the reduced model is unbiased for β1. Because SWZ �= 0
there will be some variance inflation if the full model is used, with no advantage gained
from modeling more of the unexplained error.

g. Suppose β2 �= 0 and
∑n

i=1 ZiWi = 0. What are the relative advantages and disadvantages of choosing the
reduced model over the full model?

Ans: By the above, the slope estimate in the reduced model is unbiased for β1. Because β2 �= 0
there will be some reduction in the error variance (estimates, if not the variance itself )
if the full model is used, and that will provide greater precision to estimate the slope for
the predictor of interest.

h. Suppose β2 �= 0 and
∑n

i=1 ZiWi �= 0. What are the relative advantages and disadvantages of choosing the
reduced model over the full model?

Ans: This represents a situation where the estimate of β1 will be confounded by the relationship
between �Y and �Z if �Z is not included in the model. Hence, in the reduced model, γ̂1 is
biased for β1. The variance of γ̂1 may be larger or smaller than the variance for β̂1

depending upon the amount of precision gained (how much σ2 is less than τ2) relative to
the variance inflation caused by the correlation between �W and �Z.

2. Consider an “error in the variables” model in which there is a true relationship between response Y and predictor
W given by Yi = β1 + β2Wi + εi with εi ∼ (0, σ2 > 0) totally independent. Suppose that W is unobserved,
and we instead have X, an imprecise measurement of W which follows the relation Xi = α1 + α2Wi + δi, with
δi ∼ (0, τ2 > 0) totally independent of each other and the ε’s. We thus fit a regression model Yi = γ1 +γ2Zi +ηi.
Show that the ordinary least squares estimate �̂γ is biased as an estimator of �β, even when α0 = 0 and α1 = 1.
(Hint: What must XTW equal if �̂γ is to be unbiased for �β? What does it equal?)

Ans: Let X = (�1n
�X) and W = �1n

�W . Then E[�Y ] = W�β. Now OLSE �̂γ = (XT X)−1XT �Y , so
E[�̂γ] = (XT X)−1XTW�β. This then says that (XTX)−1XTW must be the identity matrix if
�̂γ is to be unbiased for �β, and thus XTW would have to be equal to XT X. Now

XTX =
(

n
∑

Xi∑
Xi

∑
X2

i

)
and XT W =

(
n

∑
Wi∑

Xi

∑
XiWi

)
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Thus we would need
∑

Wi =
∑

Xi and
∑

XiWi =
∑

X2
i . But∑

Xi = nα1 + α2

∑
Wi +

∑
δi∑

X2
i = nα2

1 + 2α1α2

∑
Wi + α2

2

∑
W 2

i + 2α1

∑
δi + 2α2

∑
δiWi +

∑
δ2
i∑

XiWi = α1

∑
Wi + α2

∑
W 2

i +
∑

δiWi

From this, we see that for totally arbitrary α1 and α2, in general
∑

Wi �= ∑
Xi and∑

XiWi �=
∑

X2
i and �̂γ is biased for �β. Furthermore, even if α1 = 0 and α2 = 1 (as we might

hope for a variable merely measured with additive noise),∑
Xi =

∑
Wi +

∑
δi∑

X2
i =

∑
W 2

i + 2
∑

δiWi +
∑

δ2
i∑

XiWi =
∑

W 2
i +

∑
δiWi

In order to have
∑

Wi =
∑

Xi, we would need
∑

δi = 0 (an event that would not necessarily
be true, but might sometimes happen). In order to have

∑
XiWi =

∑
X2

i , we would need∑
δiWi +

∑
δ2
i = 0. Note that we are uninterested in the case that

∑
δ2
i = 0 because τ2 > 0.

Thus we have
∑

δi(Wi + δi) =
∑

δiXi = 0, which is not impossible, but is highly unusual
(the δi’s would have to be dependent upon the Wi’s. Hence, in general, if our interest
is in measuring the association between a response Y and the underlying variable W ,
regression with a surrogate variable will produce biased estimates of the true relation.

3. Suppose independent response variables Yi ∼ E(λi), λi > 0, for i = 1, . . . , n are distributed according to an
exponential distribution with

density fi(yi) =
1
λi

e−yi/λi

cdf Fi(yi) = 1 − e−yi/λi

mean E[Yi] = λi

variance V ar(Yi) = λ2
i

Recall that in the exponential, λ is a scale parameter such that if Y ∼ E(λ) then for c > 0, cY ∼ E(cλ).

a. Consider a linear regression model with λi = �xT
i

�β for known predictor vectors �xi. Is inference based on the
asymptotic normality of least squares estimators of �β valid in this setting? Justify your answer. If it is not
valid, briefly describe a regression analysis that would provide asymptotically valid inference for this model.

Ans: Because there is a mean variance relationship, OLS based inference would only be valid
if the sampling of the predictors and the value of �β were such that �xT

i
�β were the same for

all individuals.

One approach around this problem would be to iteratively use weighted least squares

with the current estimate of �̂β at each iteration used to estimate the covariance matrix
for �Y . (see homework #2)

b. Suppose Zi = µi + δi where µi is an unknown parameter and eδi ∼ E(1) are independent. What is the
distribution of eZi?

Ans: eZi = eµieδi so eZi ∼ E(eµi), a scaled exponential random variable.

c. For independent response variables Yi as above, consider a linear regression model

log(Yi) = �xT
i �γ + εi
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Is inference based on the asymptotic normality of least squares estimators of �γ valid in this setting? Justify
your answer. If it is not valid, briefly describe a regression analysis that would provide asymptotically valid
inference for this model.

Ans: Using the result from part (b), we see that Zi = log(Yi) can be written as Zi = log(λi) + εi

where the εi’s are independent and identically distributed. This suggests that asymptotic
inference for �β based on ordinary least squares estimates would be valid. It should be
noted that E[εi] = 1 �= 0, so the LSE of the intercept is biased, but that will not affect the
distribution of the estimates for the slopes.

4. Consider response variables Yi, i = 1, . . . , n and known predictors xi. Let x∗
i = xi −x be transformed predictors

obtained by centering the xi’s about their mean. Consider linear regression models

Yi = β0 + β1xi + εi

Yi = γ0 + γ1x
∗
i + εi

with independent identically distributed errors εi ∼ (0, σ2). Let �̂β and �̂γ be OLSE from the corresponding
models.

a. How does V ar(β̂1) compare to V ar(γ̂1)?

Ans: Centering of the predictors does not affect the estimates of slopes in OLS, thus their
distributions must be the same. Hence V ar(β̂1) = V ar(γ̂1). (see Homework #2 Key)

b. How does V ar(β̂0) compare to V ar(γ̂0)?

Ans: Let X and X∗ be the design matrices for the uncentered and centered models, respectively,
and let SXX =

∑
X2

i and VXX = SXX/n − X
2
. Then

V ar(�̂β) = σ2(XTX)−1 = σ2

(
SXX

n2VXX
− X

nVXX

− X
nVXX

1
nVXX

)

V ar(�̂γ) = σ2(X∗TX∗)−1 = σ2

(
1
n 0
0 1

nVXX

)
Hence V ar(γ̂0) = σ2/n < V ar(β̂0) = σ2SXX/(n2VXX ). ( Note that in the centered model, the
intercept is estimating the mean response for the average value of the predictor, and that is the case for
which we have greatest precision for estimating the mean response.)

c. Suppose we want to make inference about the average response when x = x0. Specifically, we wish to test

that E[Y | x = x0] = c. Describe a hypothesis test based on �̂β that is asymptotically valid for this setting.
(I want formulas, but matrix notation is fine, providing you have defined your notation.)

Ans: We want to test H0 : β0 + x0β1 = c. This can be expressed as H0 : A�β = 0 for A = (1 x0).

The test then is based on Q = (A�̂β − c)
(
σ2A(XTX)−1AT

)−1 (A�̂β − c) and rejects H0 when
Q > χ2

1,1−α, where χ2
1,1−α is the 1 − α quantile of the chi square distribution with 1 degree

of freedom (note rank(A) = 1).

d. Suppose we were to also construct the hypothesis test of part (c) using �̂γ. Which test is more efficient to
make this inference?

Ans: The models based on the uncentered and centered predictors are merely different pa-
rameterizations of each other. Hence, inference about the estimable function β0 + x0β1

is unique and independent of the particular parameterization. Neither model is more
efficient than the other.


