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1. Suppose Y0i ∼ (µ0, σ
2
0) for i = 1, . . . , n0 and Y1i ∼ (µ1, σ

2
1) for i = 1, . . . , n1, with Cov(Yi, Yj) = 0 for

i �= j and 0 < σ2
k < ∞ for k = 0, 1. Let Y 0 =

∑n0
i=1 Y0i/n0 and Y 1 =

∑n1
i=1 Y1i/n1 denote the sample

means for each group, and let s2
0 =

∑n0
i=1(Y0i−Y 0)2/(n0−1) and s2

1 =
∑n1

i=1(Y1i−Y 1)2/(n1−1) denote
the sample variances for each group, with pooled variance estimate s2

p = ((n0 −1)s2
0 +(n1 −1)s2

1)/(n0 +
n1 − 2). Suppose further that as n0 → ∞ and n1 → ∞, n0/(n0 + n1) → λ for some known constant
0 < λ < 1. We are interested in making inference about δ = µ1 − µ0.

Under the assumption of equal variances (so σ2
0 = σ2

1), the usual statistical inference for this problem
is based on the two sample t test for independent samples assuming equal variances using test statistic
Te = (Y 1 − Y 0)/(sp

√
1/n0 + 1/n1) and assuming that Te is distributed according to the t distribution

with n0 + n1 − 2 degrees of freedom under the null hypothesis H0 : δ = 0. A confidence interval is
constructed by inverting that test statistic.

Under the assumption of unequal variances (so σ2
0 �= σ2

1), the usual statistical inference for this problem
is based on the two sample t test for independent samples assuming unequal variances using test statistic
Tu = (Y 1 − Y 0)/

√
s2
0/n0 + s2

1/n1 and assuming that Tu is distributed according to the t distribution
with k degrees of freedom under the null hypothesis H0 : δ = 0, where k might be determined by the
Satterthwaite or Aspin-Welch approximations. A confidence interval is constructed by inverting that
test statistic.

a. Show that under the assumption of equal variances, the statistical inference based on Te is asymp-
totically correct in that the size of the hypothesis test is asymptotically at the correct level and the
confidence interval has the correct coverage probability asymptotically.

Ans: It is easiest in the long run if I solve for some general results assuming unequal variances first,
and then at a later stage consider equal variances. So, based on the Levy CLT, I know

√
n0(Y 0 − µ0) →d N (0, σ2

0)√
n1(Y 1 − µ1) →d N (0, σ2

1)

and since n0/n → λ and n1/n → 1 − λ, by Slutsky’s theorem we have

√
n(Y 0 − µ0) →d N (0,

σ2
0

λ
)

√
n(Y 1 − µ1) →d N (0,

σ2
1

1 − λ
)

Thus by independence we get

√
nDn ≡ √

n(Y 1 − Y 0 − (µ1 − µ0)) →d N (0,
σ2

0

λ
+

σ2
1

1 − λ
) (1.1)

Now by WLLN we know for j = 0, 1

1
nj

nj∑
i=1

(Yji − µj)2 →p σ2
j

We also have
1
nj

nj∑
i=1

(Yji − µj)2 =
1
nj

nj∑
i=1

(Yji − Y j)2 + (Y j − µj)2
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and by WLLN Y j →p µj, so (Y j − µj)2 →p 0. Thus using Slutsky’s along with the fact that
n/(n − 1) →p 1, we have

s2
j =

1
nj − 1

nj∑
i=1

(Yji − µj)2 →p σ2
j

Using this, we find

√
n

√
s2
0

n0
+

s2
1

n1
→p

√
σ2

0

λ
+

σ2
1

1 − λ
(1.2)

and

s2
p =

(n0 − 1)s2
0 + (n1 − 1)s2

1

n − 2
→p λσ2

0 + (1 − λ)σ2
1

so
√

nsp

√
1
n0

+
1
n1

=
√

s2
p(

n

n0
+

n

n1
)

→p

√
σ2

0

1 − λ
+

σ2
1

λ

(1.3)

Now combining results (1.1) and (1.3), we find by Slutsky’s that under the null hypothesis
H0 : µ0 = µ1

Te =
√

nDn

√
nsp

√
1

n0
+ 1

n1

→d N
0,

σ2
0

λ
+ σ2

1
1−λ

σ2
0

1−λ + σ2
1

λ

 (1.4)

and combining results (1.1) and (1.2), we find by Slutsky’s that under the null hypothesis
H0 : µ0 = µ1

Tu =
√

nDn

√
n
√

s2
0

n0
+ s2

1
n1

→d N
0,

σ2
0

λ
+ σ2

1
1−λ

σ2
0

λ + σ2
1

1−λ

 = N (0, 1) (1.5)

Now to answer part a, we find from (1.4) that when σ2
0 = σ2

1 = σ2, Te →d N (0, 1). The usual
inference for Te is based on a t distribution with n−2 degrees of freedom, which asymptotically
is equivalent to the standard normal, so the usual inference in this case is valid.

b. Show that under the assumption of equal variances, the statistical inference based on Tu is asymp-
totically correct.

Ans: From (1.5) we find that Tu is asymptotically standard normal no matter whether the variances
are equal or not. Hence, as the t with k degrees of freedom is asymptotically standard normal,
and as the degrees of freedom for the Aspin-Welch test is bounded below by the smaller of
n0 − 1 and n1 − 1, we know that the usual inference based on Tu is asymptotically valid.

c. Show that under the assumption of unequal variances, the statistical inference based on Tu is
asymptotically correct.

Ans: Same answer as part b.

d. Show that under the assumption of unequal variances, the statistical inference based on Te is not
necessarily asymptotically correct. Under what conditions will inference based on Te be asymptot-
ically valid in this setting? Under what conditions will it be conservative? anti-conservative?

Ans: When the group variances are not equal, we see from (1.4) that the asymptotic variance of Te

is 1 only if λ = 1/2. Otherwise, the asymptotic variance is

(1 − λ)σ2
0 + λσ2

1

λσ2
0 + (1 − λ)σ2

1
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Now the inference will be conservative if the true variance is less than 1, and the inference will
be anti-conservative if the true variance is greater than 1. We find that the true variance is
greater than 1 precisely when

(1 − 2λ)σ2
0 > (1 − 2λ)σ2

1

This occurs when λ < 0.5 and σ2
0 > σ2

1 or when λ > 0.5 and σ2
0 < σ2

1 . That is, the t test
based on equal variances is asymptotically anti-conservative when the group with the largest
variance has a smaller sample size than the group with the smallest variance. If we sample the
group with the larger variance in greater numbers than the group with the smaller variance,
the use of Te leads to conservative inference (the true type I error is smaller than the nominal
level, the coverage probability of confidence intervals is greater than the stated level, and the
statistical power to detect an alternative hypothesis is diminished).

e. What do the above results suggest about the validity of regression based on linear regression models
in the presence of heteroscedasticity?

Ans: The t test with equal variances is the special case of unweighted linear regression in which the
single predictor is a binary variable. Because the unweighted linear regression model produces
variance estimates based on the assumption of equal error variance across all observations, the
above results tell us that that inference will be incorrect in the absence of a balanced design.

2. Consider the simple linear regression model Yi = β0+xiβ1+εi for i = 1, . . . , n, with xi known predictors,
�β = (β0, β1)T an unknown parameter vector to be estimated and/or tested, and Cov(εi, εj) = 0 for i �= j.
Without loss of generality, we will assume that

∑n
i=1 xi = 0. Let σ2

i = αi + xiγ > 0 with γ and �α

unknown nuisance parameters subject to �αT�x = 0. Let �̂β be the ordinary least squares estimate of �β.

a. What is the mean and variance of β̂1?

Ans: In this problem with Y =
∑n

i=1 Yi/n, Sxx =
∑n

i=1 x2
i , and SxY =

∑n
i=1 xiYi

XTX =
(

n 0
0 Sxx

)
(XTX)−1 =

(
1
n 0
0 1

Sxx

)
XT �Y =

(
nY
SxY

)
so

�̂β = (XTX)−1XT �Y =
(

Y
SxY

Sxx

)
E[ �̂β] = (XT X)−1XT E[�Y ] = (XT X)−1XTX�β = �β and the variance of �̂β is found by

XTVX =
( ∑

αi + γ
∑

xi

∑
αixi + γ

∑
x2

i∑
αixi + γ

∑
x2

i

∑
αix

2
i + γ

∑
x3

i

)
=

( ∑
αi γ

∑
x2

i

γ
∑

x2
i

∑
αix

2
i + γ

∑
x3

i

)
V ar(�̂β) = (XTX)−1XTVX(XT X)−1

=
(

1
n 0
0 1

Sxx

) ( ∑
αi γ

∑
x2

i

γ
∑

x2
i

∑
αix

2
i + γ

∑
x3

i

)(
1
n 0
0 1

Sxx

)
=

(∑
αi/n2 γ/n
γ/n

∑
αix

2
i /S2

xx + γ
∑

x3
i /S2

xx

)

From this we find that E[β̂1] = β1 and V ar(β̂1) = (
∑

αix
2
i + γ

∑
x3

i )/S2
xx.

b. Under what conditions will the estimated variance of β̂1 based on the ordinary least squares regres-
sion analysis be consistent for the true variance of β̂1.

Ans: Under OLS, we assume that the errors have constant variance, and our estimate

σ̂2 =
1

n − p
(�Y −X�̂β)T (�Y − X�̂β)
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consistently estimates the limit of
∑n

i=1(αi + γxi)/n =
∑n

i=1 αi/n = α, assuming such a limit

exists. Let α be that limit. Then, the OLSE variance estimate of �̂β is

V̂ ar(�̂β) = σ̂2(XTX)−1 = α

(
1
n 0
0 1

Sxx

)

and the variance estimate for β̂1 is therefore just

V̂ ar(β̂1) =
α∑n

i=1 x2
i

=
α

nVx

where Vx = Sxx/n is the variance of the xi’s.

From part (a), we find

V ar(β̂1) =
∑

αix
2
i

n2V 2
x

+
γ

∑
x3

i

n2V 2
x

From this we see that V̂ ar(β̂1) will tend toward V ar(β̂1) certainly when αi ≡ α for all i and
either γ = 0 or the distribution of the xi’s is unskewed.

Now it is stipulated that
∑

αixi = 0. If this were to be strengthened to the case that the αi’s
are also sampled independently of the xi’s (and note that

∑
αixi = 0 merely suggests that they

are uncorrelated, not necessarily independent), then
∑

αix
2
i /n = (

∑
αi/n)(

∑
x2

i /n). Thus

V ar(β̂1) =
α

nVx
+

γ
∑

x3
i

n2V 2
x

and V̂ ar(β̂1) will tend toward V ar(β̂1 when either γ = 0 or the distribution of the xi’s is
unskewed. Notice that the requirement for the xi’s to be unskewed is analogous to the equal
sample sizes required for the answer to problem 1(d) above.

c. What restrictions on the problem would be necessary for �̂β to be asymptotically normally dis-
tributed? (You need not rigorously derive an asymptotic distribution, instead just briefly discuss
the ways that this setting differs from the assumptions under which we derived the asymptotic
distribution in class, and what general requirements might address those problems.)

Ans: When the errors are uncorrelated and identically distributed, in order to derive the asymptotic
normal results for the OLSE we had to place restrictions on the sampling of the xi’s to ensure
that the contribution of any particular xi to the total variance of the xi’s was negligible as
n → ∞ in simple linear regression. This restriction translates into a requirement that the
smallest eigenvalue of XT X tend to infinity as n → ∞, along with some requirements that
none of the cases sampled be too influential (see class notes). In this more general case we
must be concerned in the way that we sample the xi’s and the εi’s. This will translate into a
requirement that the smallest eigenvalue of XTV−1V approach infinity as n → ∞, along with
some requirements that the most influential cases not also tend to have the errors with the
largest variance.

d. What would be the effect of using the asymptotic results for ordinary least squares regression
analysis on tests of H0 : β̂1 = 0? Consider the effect that the variance of the αis and the value of
γ has on your answer.

Ans: Assuming that asymptotic normality holds, we need only worry about when the variance
estimate under OLSE over- or underestimates the true variance. When the variance estimate
underestimates the true variance, tests of H0 will be anti-conservative in that the true type I
error will be larger than desired. When the variance estimate overestimates the true variance,
tests of H0 will tend to have a smaller type I error than desired.



Biost 533, Spr 99 Homework #2 Key, Page 5

When the αi’s are independent of the xi’s (which would include the case when V ar(αi) = 0),
then the variance estimate V̂ ar(β̂1) will underestimate the true variance when γ and the
skewness of the xi’s are of the same sign, and it will overestimate the true variance when γ
and the skewness of the xi’s are of opposite sign. For instance, if the distribution of the xi’s
is positively skewed, then a tendency for larger variance with larger values of xi will lead to
anti-conservative tests, while a tendency for smaller variance with larger values of xi will lead
to conservative tests (and loss of statistical power).

When γ = 0 or the distribution of the xi’s is unskewed, then the variance estimate V̂ ar(β̂1)
will underestimate the true variance when the weighted average of the αi’s based on weights
x2

i is greater than α and will overestimate the true variance when the weighted average is less
than α. The weighted average will tend to be greater than α when the more extreme values
of xi are associated with larger αi. Consider for example the simple example where n = 5 and
�x = (−2,−1, 0, 1, 2)T (so

∑
xi = 0). Now if �α = (3, 1, 2, 1, 3)T (so

∑
αixi = 0, but the αi’s

are not independent of the xi’s), then α = 2, but the weighted average (
∑

αix
2
i )/(

∑
x2

i ) = 2.6
and inference based on the OLSE estimate of the variance is anti-conservative. On the other
hand, if �α = (1, 3, 2, 3, 1)T (so

∑
αixi = 0, but the αi’s are not independent of the xi’s), then

α = 2, but the weighted average (
∑

αix
2
i )/(

∑
x2

i ) = 1.4 and inference based on the OLSE
estimate of the variance is conservative.

Clearly, as both the distribution of the αi’s relative to the xi’s and the value of γ and/or the
skewness of the xi’s are allowed to vary, the tendency for the OLS variance estimate to over-
or underestimate the true variance will reflect the combination of those effects.

e. What would be the effect of using the asymptotic results for ordinary least squares regression
analysis on confidence intervals for β1? Consider the effect that the variance of the αis and the
value of γ has on your answer.

Ans: Assuming that asymptotic normality holds, we need only worry about when the variance
estimate under OLSE over- or underestimates the true variance. When the variance estimate
underestimates the true variance, confidence intervals for β1 will tend to be too narrow, and
thus will have a coverage probability that is less than the desired level. When the variance
estimate overestimates the true variance, confidence intervals for β1 will tend to be too wide,
and thus will have a coverage probability that is greater than the desired level. Discussion of
the cases that such over- or underestimation occurs is exactly the same as for part (d).

3. Let Yi ∼ Bernoulli(pi), i = 1, . . . , n be independent random variables with pi = �xT
i

�β for known
predictor vector �xi.

a. Is inference about �β using linear regression analysis asymptotically valid for this problem? If so,
provide justification. If not, are there any situations in which it might be approximately valid?

Ans: In the Bernoulli model, we have regression model Yi = �xT
i

�β + εi with εi’s being independently
distributed with mean 0 and variance pi(1 − pi). Hence, unless �xT

i
�β is constant for all i =

1, . . . , n (as it would be under the null hypothesis H0 : β1 = β2 = · · · = βp−1 = 0), there is
heteroscedasticity, with a relationship between the predictors and the magnitude of the error
variance. Hence, inference based on OLS will in general not be correct. Note, however, that
if .4 ≤ pi ≤ .6, then .24 ≤ pi(1 − pi) ≤ .25, and the heteroscedasticity is not too severe. In
fact, a commonly quoted rule of thumb is that if .3 ≤ pi ≤ .7, then .21 ≤ pi(1− pi) ≤ .25, and
OLS based inference in this setting will generally be okay. Some others will further relax this
to .2 ≤ pi ≤ .8. I note that if the xi’s are sampled such that the distribution of pi’s is fairly
symmetric about .5, then we can use the results of problem 2 about the αi’s (because there will
be no linear trend in the error variances with the xi’s) to infer that the OLS inference will tend
to be conservative, because the more extreme values of xi will tend to be associated with the
smaller error variance. On the other hand, if the xi’s are sampled such that the distribution of
the pi’s is skewed about .5, then the results of problem 2 about γ can be used, because there
will tend to be a trend in the error variance with the values of the xi’s.
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b. Describe an iterative approach in which weighted least squares might be used to address this
problem. What undesirable small sample behavior with respect to the range of estimates p̂i might
persist under this analysis scheme?

Ans: If we knew the error variances, we could use weighted least squares (generalized least squares
with a diagonal covariance matrix for �ε) to obtain valid inference. One approach would be to

first use OLS to estimate �̂β
(0)

and p̂
(0)
i = �xT

i
�̂β

(0)

. Then use V(0) with V
(0)
ii = p̂

(0)
i (1 − p̂

(0)
i )

and V
(0)

ij = 0 for i �= j to find GLSE �̂β
(1)

G . These estimates are then used to find p̂
(1)
i and

V(1). The process is then repeated with GLSE �̂β
(k)

G estimated using V(k−1) until (�̂β
(k)

G −
�̂βG(k − 1))T (�̂β

(k)

G − �̂βG(k − 1)) is sufficiently small. Inference is then based on estimates of the
variance of the regression parameter vector derived under weighted (generalized) least squares
theory.

This is an asymptotically valid procedure under the correct model. However, in the setting
of small samples, it may well happen that estimates p̂i would be less than 0 or greater than
1. This is often regarded as undesirable. This problem does not occur in logistic regression,
where instead of the mean pi, the log odds log(pi/(1 − pi)) (which can range from −∞ to
∞) is modeled by �xT

i
�β. Finding estimates for logistic regression uses an iteratively reweighted

least squares approach very similar to that described above, except transformations of the
observations are used. (See Biost 570/Stat 570)


