Organizing Your Approach to a Data Analysis

Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington www.emersonstatistics.com

December 29, 2013

- I. Before looking at the data
- A. Identify overall goal of the study
- B. Identify specific aims and how they relate to overall goal
- 1. Identify the current state of scientific knowledge
- 2. Identify the competing hypotheses that the study is designed to discriminate between
- Often dictated by available data)
- C. Refine scientific hypotheses into statistical hypotheses
- 1. Identify type of question
- a. Prediction, estimation, or testing
- b. Identifying groups, quantifying distributions, or comparing distributions
- Where appropriate, specify statistical hypotheses in terms of a summary measure for the distribution of measurements 2
- a. Summary measure: e.g., mean, geometric mean, median, proportion or odds above a threshold, event rate, hazard
- b. Contrast across groups: difference, ratios
- D. Consider design of ideal experiment
- 1. Ignore practical, ethical limitations in order to be able to later compare how close the actual situation is to the ideal
- a. Who / what would be the subjects?
- i. Inclusion criteria (ideal: eventual target of inference)
- ii. Exclusion criteria (ideal: exclusions necessary of desirable in experimental setting)
- b. What would be the intervention(s)?
- c. How would subjects be assigned to the intervention?
- i. Interventions that are systematically varied
- ii. Interventions that are controlled at a single level
- iii. Observational (convenience) sampling
- d. What would be the variables measured
- i. Outcome variables
- ii. Implementation of interventions
- iii. Additional covariates
- E. Available data
- 1. Sampling scheme

- Retrospective vs prospective
- b. Observational vs intervention
- c. Inclusion, exclusion criteria
- d. How was sample size determined
- Overall

Within any strata

- Variables in the data set i ک
- a. Names
- b. Relationship to real world quantities
- Conditions under which they were measured
- e.g., frequency, timing relative to any interventions
- d. Units of measurement (limitations)
- e.g., qualitative vs quantitative, continuous vs discrete, patterns of missing data
- Categorization of variables according to meaning es.
- Demographic (age, sex, etc.)
- Baseline physiology (SBP, performance status)
- c. Baseline disease risk factors, prognosis
- d. Measures of treatment intervention
- Measures of ancillary clinical course during treatment (e.g., ancillary treatments, environmental conditions)
- Measures of treatment outcome
- 4. Categorization of variables according to use in analysis
- a. Response (outcome) variables
- b. Predictor variable of interest (variable identifying groups) (POI)
- Variables identifying subgroups to explore effect modification
- d. Potential confounders
- Causally associated with response variable (in truth) independent of predictor of interest (in groups where POI is held constant)
- Association with predictor of interest (in the sample)
- Not in causal pathway of interest
- Variables which allow increased precision ė.
- Variables prognostic of response variable, but not associated with predictor of interest
- Questions about effects within such groups can be answered with more precision than questions about effects in the larger population (e.g., adjusting for age)
- Surrogates for response ų.
- Variables in the causal pathway of interest
- Variables measuring a later (or near contemporaneous) effect of the response
- g. Irrelevant
- Statistical Analysis Plan (SAP defined prior to looking at data)

A. Primary specific aim

- 1. Outcome measurement
 - a. Clinical definition
 - b. Protocol definition of measurement
 - c. Statistical summary measure
- 2. Predictor(s) of interest (primary grouping variable(s))
- 3. Subgroups used for effect modification
 - a. Contrasts of summary measures across subgroups
- 4. Statistical hypotheses
 - a. Superiority (and whether that corresponds to higher or lower summary measures)
 - b. Noninferiority (and whether margin corresponds to higher or lower summary measures)
 - c. Approximate equivalence
 - d. Inferiority (and whether that corresponds to higher or lower summary measures)
 - e. Two-sided differences
- 5. Statistical burden of proof
 - a. Level of significance for hypothesis testing
 - b. Descriptive criteria and precision
- B. Secondary and exploratory specific aims
 - 1. These might represent supportive analyses using alternative clinical outcomes
 - 2. These might represent analyses considering specific mechanisms of action
 - 3. These might represent analyses restricted to particular subgroups
 - 4. These might represent safety analyses in RCT
- C. Identify analysis populations
 - 1. Primary efficacy: the cases that will be included to answer your primary question
 - a. In superiority RCT this will be per randomization or intent to treat
 - b. In noninferiority RCT this might be a "per protocol" analysis of data while on study treatment
 - 2. Secondary efficacy
 - a. In RCT this might be modified intent to treat to exclude some subjects based on prerandomization variables
 - b. In RCT this might be a "per protocol" analysis to assess mechanisms of action
 - 3. Safety
 - a. In RCT this is usually all subjects who have taken any amount of study drug, and includes time up to 30 days after discontinuation
- D. Identify statistical analysis model
 - 1. Univariate estimation
 - 2. Two sample tests
 - a. Variations re variance estimation, permutation tests, exact methods, etc.
 - b. Stratified tests

- 3. Regression methods
 - a. Summary measures
 - b. Link function
 - c. Modeling of predictor of interest (dichotomized, dummy variables, continuous, transformed)
 - d. Adjustment for covariates (and how modeled as dichotomized, dummy variables, continuous, transformed)
 - e. Modeling of interactions
 - f. Regression parameters used to form statistic
 - g. Statistic used for estimation, testing (Wald, score, likelihood ratio)
- E. Handling of missing data
- F. Tables and Figures
 - 1. Description of sampling scheme actually attained
 - a. Timeframes and sample sizes
 - b. Frequency and timing of measurements
 - c. Missing data patterns
 - Censoring distribution
 - Subject / investigator specified reasons for drop out
 - 2. Description of subjects and baseline variables
 - a. What
 - Means, standard deviations, minimum, maximum, median, quartiles of continuous variables
 - Frequencies of binary or categorical data (including important scientific categories of continuous variables)
 - b. How
 - Prospective cohort studies: Columns corresponding to groups defined by POI
 - Retrospective case-control studies: Columns corresponding to groups defined by outcome
 - Exploratory cross-sectional studies: Either of the above depending whether focus is more on identifying risk factors for outcome or on identifying all outcomes from risk factors
 - 3. Description of outcomes
 - 4. Preliminary estimates and SE related to primary question
 - 5. Tables / figures of inference (regression parameters, estimates, CI, tests)
 - 6. Exploratory analysis results
- III. Univariate descriptive statistics
 - A. Goals
 - 1. Identify errors in the data
 - a. Particularly unusual measurements (out of range)
 - b. Unusual combinations of measurements
 - 2. Verify your understanding of the measurements

- 3. Identify patterns of missing data
- 4. Identify exact population used in study (Materials and Methods)
- 5. Identify aspects of the data that may present technical statistical issues
 - a. Ideal: allows easiest, most precise statistical inference with smaller sample sizes
 - equal information about all groups being investigated (? equal sample sizes)
 - measurements of response within each group distributed symmetrically with no 'long tails' (outliers)
 - no missing data
 - b. Potential problems suggesting possibility of problematic scientific interpretation (problems which can not necessarily be solved with the available data)
 - missing data patterns
 - c. Potential problems suggesting less generalizable statistical analysis (problems not necessarily indicated by the measures of statistical confidence)
 - 'Outliers' in distribution of grouping variables (predictors): i.e., low sample sizes in some groups that are far away from the rest of the data (e.g., trying to determine an age effect in a sample in which most are between 10 and 20 years old, but one subject is 80)
 - d. Potential technical problems suggesting possibility of less precise inference (problems that will tend to lower our reported level of statistical precision)
 - 'Outliers' in distribution of response
 - Too little variation in the distribution of the grouping variables (e.g, trying to determine an age effect from a sample in which everyone is between 20 and 21 years old)
 - Too much association among the different grouping variables (e.g., trying to determine an age effect when all the young subjects are male and all the old subjects are female)
 - e. Potential technical problems which suggest we might need to use more complicated statistical methods
 - Repeated measurements on the same sampling unit (correlated response)
 - When comparing means: unequal variability across groups being compared
 - When comparing time to events: lack of proportional hazards
 - When adjusting for covariates: nonlinear effects; interactions
- C. Order of investigation
 - 1. Potential confounders
 - 2. Predictor of interest
 - 3. Response
- D. Tools
 - 1. Frequency tables
 - 2. Mean, median, standard deviation, etc.
 - 3. Box plots, histograms
- IV. Bivariate and trivariate descriptive statistics
 - A. Goals

- 1. Identify confounding relationships
 - a. Associations between other variables and predictor of interest
 - b. Associations between other variables and response
- 2. Identify important predictors of response
 - a. Univariate effects
 - b. Effect modification (interactions)
- 3. Identify surrogates of response
- 4. Characterize form of functional relationships (linear, etc.)
- B. Ideal (because easiest for the statistician)
 - 1. Predictor of interest has no association with any other predictors
 - 2. Only a few variables are markedly associated with response
 - 3. All associations look like a straight line relationship
 - 4. No interactions (effect modification)
- C. Order of investigation
 - 1. Relationships among other predictors
 - 2. Relationships between predictor of interest and other predictors
 - 3. Relationships between response and other predictors
 - 4. Relationships between predictor of interest and response overall
 - 5. Relationships between predictor of interest and response within subgroups

D. Tools

- 1. Contingency tables
- 2. Stratified means, medians, standard deviations, etc.
- 3. Stratified box plots, histograms, etc.
- 4. Scatterplots
- 5. Stratified scatterplots
- 6. Correlations
- V. Defining a suitable context for modeling
 - A. Goals
 - 1. Choosing appropriate form for response variables
 - a. Selection of measure of response
 - Transformations of available data
 - b. Summary measure to use as basis for statistical model
 - 2. Selection of groups to be investigated / compared
 - Form for predictor of interest
 - Identification and form of interactions (effect modification)
 - Identification and form of potential confounders to be modeled
 - Identification and form of precision variables to be modeled
 - 3. Choosing analysis method (type of regression)

B. Methods

- 1. Ideal: Statistical model dictated entirely by scientific question (before looking at the data)
- 2. Practical: Model building (but may lead to problematic inference)
 - a. Educated guess for first models
 - b. Fit models
 - c. Evaluate validity of necessary assumptions

VI. Model Building to Address Primary Question

- A. Goals (in order of importance)
 - 1. Selection of variables to address scientific questions (main effects and interactions)
 - 2. Selection of variables to minimize bias (address confounding)
 - 3. Selection of variables to maximize precision
 - 4. Selection of models which are easiest to implement (usually: have the least technical requirements on the distribution of response)

B. Methods

- 1. Addressing scientific question: Thinking about the problem
- 2. Addressing confounding: Adding or removing variables and observing effect on other regression parameters relative to findings in bivariate description of data (many difficult issues here)
- 3. Addressing precision: Determining which variables tend to predict response (many difficult issues here)
- 4. Evaluate extent to which data meets technical requirements of statistical procedures

VII. Exploratory Analyses for Hypothesis Generation

- A. Modeling of exact form of predictor-response relationship (e.g., dose-response)
- B. Identification of other predictors of response
- C. Subgroup analyses: Compare effect of predictor of interest on response within subgroups (effect modification)

VIII. Reporting Results and Interpretation

- A. Scientific Background and Hypotheses
- B. Materials and Methods
 - 1. Sampling scheme
 - 2. Most basic descriptive statistics
- C. Results (more objective first)
 - 1. Descriptive statistics
 - 2. Results of analyses about primary question
 - a. Estimates of effect
 - Point estimates (single best estimate)
 - Interval estimates (range of estimates indicating precision)
 - b. Decisions about hypotheses
 - Binary decision (yes or no)
 - Measure of statistical confidence in precision

- 3. Results of analyses about prespecified secondary questions or questions which demonstrate consistency (or lack of same) across alternative approaches
- 4. Results of analyses about questions that arose during analysis and that the vast majority of readers would agree could and should be answered by the data
- D. Discussion (subjective, including particularly data-driven analyses)
 - 1. Elaboration on ways that these analyses address the overall goal of the study
 - 2. Results of the most speculative analyses of the data